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Semi-Autonomous Robotic Assistance for
Gallbladder Retraction in Surgery
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Franziska Mathis-Ullrich1,∗

Abstract—(Semi-)autonomous robotic assistance in minimally
invasive surgery has the potential to alleviate surgical staff
shortage and decrease the workload of medical professionals.
These robots must execute complex tasks within unpredictable
and unstructured environments encountered during surgery.
Although imitation learning approaches have the potential to
learn complex surgical skills, the interpretation of robot be-
havior during safety-critical scenarios, such as surgery, remains
a challenge. Through combining interpretable 3D point cloud
feature vectors based on domain knowledge with feedforward
neural networks and probabilistic movement primitives, domain
knowledge-informed movement primitives effectively learn sur-
gical skills while improving the interpretation of robot behavior.
The evaluation on test data proves that the proposed method
can effectively learn surgical skills based on a small number of
demonstrations. Using the proposed imitation learning method, a
semi-autonomous robotic assistance for directed gallbladder re-
traction is introduced and evaluated during gallbladder removal
on a silicone liver phantom and ex vivo porcine livers. Achieving
over 91 % and 92 % successful gallbladder retractions, the
robotic assistance enables effective support for surgeons during
these surgical interventions.

Index Terms—Surgical Robotics, Informed Machine Learning,
Imitation Learning, Learning from Demonstration, Minimally
Invasive Surgery.

I. INTRODUCTION

ROBOT-assisted surgery with (semi-)autonomous robotic

assistance systems has the potential to address surgical

staff shortages and surgeon workload on a wide scale by sup-

porting the surgical team [1]–[11]. Robotic assistance for task

autonomy, i.e. level of autonomy (LoA) 2, in which surgeons
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Fig. 1. Experimental setup for gallbladder retraction during cholecystectomy
with the semi-autonomous robotic assistance. A collaborative robot with a
mechatronic interface for controlling surgical graspers is used to perform the
gallbladder retractions.

and robots collaborate intraoperatively, propose an alternative

to robotic surgery with full autonomy (LoA 5), which remains

challenging due to task complexity, environmental difficulties,

and the degree of human involvement in surgical procedures.

Gallbladder removal, i.e. cholecystectomy, is a common

surgical procedure to remove the gallbladder, which requires

diverse surgical tasks, such as dissection, clipping, cutting,

and retraction, to separate the gallbladder from the liver bed.

The procedure is commonly performed by a surgeon who is

supported by a surgical assistant [12]. Thus the procedure

is ideal for introducing (semi-)autonomous robotic assistance

systems. Previous works have automated surgical tissue re-

traction without translation to ex vivo tissue [11], [13], [14].

Liang et al. [15] introduce autonomous retraction for tissue

dissection on ex vivo chicken tissue, but did not evaluate the

method for cholecystectomy. Moreover, Oh et al. [16] focus on

autonomous recognition of the dissection boundary on an ex
vivo porcine gallbladder. However, the work uses pre-defined

path planning of the retraction direction.

To execute diverse surgical tasks, the robots need to interact

with the complex and dynamic environment of the surgical

scene consisting of deformable organs and understand the

surgeon’s actions and intentions to provide useful assistance.

Learning-based methods such as imitation learning show a

promising approach to achieve robot behavior that addresses

these challenges of robotic surgery. Imitation learning al-

lows robots to learn surgical skills from a small number of
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human demonstrations. To date, commonly used imitation

learning approaches for surgical procedures include generative

adversarial imitation learning [17], adaptive model predictive

control [13], and movement primitive-based approaches [18]–

[20]. Movement primitive-based approaches, such as Dynamic

movement primitives (DMP) [18], deep movement primitives

(DeepMP) [21], and probabilistic dynamic movement primi-

tives (ProDMP) [20], combine basic robot movements based

on human demonstrations into more complex robot skills.

However, these methods often rely on an end-to-end learning

process, in which the input and output features of the robot

motion generation are difficult to interpret, which is especially

important in the context of certification and acceptance of

robotic assistance in surgery.
In order to make the input and output of autonomous as-

sistance systems understandable for surgeons, previous works

have introduced domain knowledge into the systems’ decision

process to improve their interpretability [22], [23]. Meli et

al. [22] introduce interpretable task planning and situation

awareness of an autonomous robotic assistance system by en-

coding prior expert knowledge in a logic module and providing

semantic interpretation of sensor data with a patient-specific

biomechanical simulation. Including domain knowledge in

imitation learning approaches holds significant promise for

achieving (semi-)autonomous robotic assistance with complex

and interpretable behavior. However, robotic assistance for

surgeons that combines efficient and accurate robot movement

prediction with interpretability of the prediction remains a

challenge.
In this work, we introduce a semi-autonomous robotic

assistance system with task autonomy (LoA 2) for the directed

gallbladder retraction task in cholecystectomy on phantom and

ex vivo scenario. We introduce domain knowledge-informed

movement primitives (DKMP) that combine interpretable 3D

point cloud feature vectors based on domain knowledge

with feedforward neural networks and probabilistic movement

primitives (ProMP) trained on expert demonstrations. Our

method is used to learn a movement primitive for performing

gallbladder retraction in the desired direction depending on

the current surgical scene. We validate and compare DKMP

on datasets with unknown gallbladder retractions on a surgical

liver phantom [24] and ex vivo porcine livers. The results indi-

cate that DKMP can accurately predict gallbladder retractions,

while having interpretable input and output features. Finally,

we deploy DKMP as a semi-autonomous robotic assistance

system for directed gallbladder retraction tasks in phantom

and ex vivo surgeries, resulting in a success rate of 91 % and

92 %, respectively.
The main contributions of this work can be summarized as:

• A semi-autonomous robotic assistance system for di-

rected gallbladder retraction tasks in phantom and ex vivo
cholecystectomies.

• Domain knowledge-informed movement primitives

(DKMP), an interpretable imitation learning method for

learning surgical tasks from expert demonstrations by

making explicit use of domain knowledge.

• An experimental evaluation of DKMP on phantom and

ex vivo porcine liver surgeries.

II. METHODS

We propose domain knowledge-informed movement primi-

tives (DKMP) to incorporate domain knowledge in the input

features of robot movement prediction. DKMP combines a

domain knowledge-based feature extraction from point clouds,

a neural network-based movement prediction and a ProMP-

based trajectory generation mechanism to predict gallbladder

retraction trajectories based on point clouds of the current

surgical scene (Figure 2).

A. Feature Extraction

To extract interpretable features from the point cloud of the

current surgical scene, DKMP includes a feature extraction

step (Figure 2). The definition of these extracted features is

crucial for the efficacy and interpretability of DKMP, as they

serve as the input features for the movement prediction neural

network. Therefore, the definition is based on domain knowl-

edge of the surgeons from clinical practice. While this work

presents the feature extraction for the gallbladder retraction

during cholecystectomy, a similar feature extraction process

could be used for other surgical tasks.

To ensure the safe dissection of the gallbladder during

cholecystectomy, it is essential to apply the appropriate tension

at the specific location where the next dissection step will be

performed. This location, referred to as the next dissection
point pnext, lies on the accessible section of the dissection

plane, also known as the dissection line (Figure 3). The

correct gallbladder retraction direction and force depend on

the location of the next dissection point pnext, as well as the

progress of the dissection line. The retraction direction of

the gallbladder in relation to the endoscope is mostly facing

ventrally (upwards, z-axis) and cranially (backwards, y-axis)

to the patient’s left, right or middle (x-axis) depending on the

location of the next dissection point pnext along the dissection
line (Figure 3).

Using this knowledge of the clinical practice, we define

five distinct point cloud landmarks in the surgical scene of the

gallbladder removal:

• The lowest point of the liver bed pstart,

• left-most point of the dissection line pleft,

• right-most point of the dissection line pright,

• next dissection point shown by the surgeon with the tip

of the surgical instrument pnext,

• and grasping point defined by the tip of the surgical

grasper pgrasp.

These landmarks are distinct in the scene of both the surgical

liver phantom (Figure 3a), as well as the ex vivo porcine liver

(Figure 3b). The lowest point of the liver bed pstart is used as a

reference point for the other landmarks, while the landmarks

pleft, pright and pnext represent the current dissection line. The

current contact location of the surgical grasper is represented

by the landmark pgrasp, which is extracted in the center of

the grasper tip. At each step of the surgical procedure, the

surgeon manually identifies key landmarks in the point cloud

(as depicted in Fig. 3c) through an intuitive graphical user

interface (task autonomy, LoA 2 [5]). While the focus of

this paper is automated trajectory generation, future work will
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SCHÜSSLER ET AL.: SEMI-AUTONOMOUS ROBOTIC ASSISTANCE FOR GALLBLADDER RETRACTION IN SURGERY 3

ProMP
Conditioning on 

predicted endpoint

Trajectory

(51, 3)

Surgical Scene

Feature 

Vectors

(7, 3)

Predicted

Endpoint

(3)

Robot

Feature Extraction
Point cloud feature extraction 

based on domain knowledge 

Point Cloud

FF
, 1

28
, R

eL
U

Movement Prediction
Trajectory endpoint prediction 

based on point cloud features 

FF
, 1

28
, R

eL
U

FF
, 1

28
, R

eL
U

FF
, 1

28
, R

eL
U

FF
, 1

28
, R

eL
U

FF
, 1

28
, R

eL
U

FF
, 1

28
, R

eL
U

FF
, 1

28
, R

eL
U

3D Point Cloud Feature Vectors
(Distances in point cloud space)

Predicted Endpoint
(Point in robot task space)

Surgeon

Domain

Knowledge

Surgeon

Trained on Teleoperated

Demonstrations

Surgeon

Trained on Teleoperated

Demonstrations

Fig. 2. Domain knowledge-informed movement primitives (DKMP): DKMP combine the extraction of interpretable features from point clouds based on
domain knowledge with neural network-based movement prediction, and probabilistic movement primitives (ProMP) for generating gallbladder retraction
trajectories depending on the current surgical scene.

aim to automate the extraction of these landmarks from the

point cloud, giving the surgeon task strategies to select from

(conditional autonomy, LoA 3 [5]).

The defined point cloud landmarks are the basis for the

interpretable input features of the DKMP. Based on these

five point cloud landmarks, we compute seven 3D feature

vectors, each capturing the spatial relationship between the

landmarks of our surgical scene. Stacking these vectors yields

a (7,3) matrix, which serves as input to the neural network for

movement prediction:

f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1
f2
f3
f4
f5
f6
f7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

pleft − pstart

pright − pstart

pnext − pstart

pgrasp − pstart

pleft − pnext

pright − pnext

pgrasp − pnext

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
7×3. (1)

The 3D point cloud feature vectors f1, f2, f3, and f4 provide

information about the current progress of the gallbladder

separation by computing the distance of the dissection line
pleft, the next dissection point pnext, and the grasping point
pgrasp to the lowest point pstart of the liver bed (which indicates

the starting position of the separation). Additionally, the 3D

point cloud feature vectors f5 and f6 contain information

about the location of the surgical instrument pnext on the

dissection line. Thus, they give information on where the

surgeon will perform the next dissection, which is crucial to

understand the desired direction of the gallbladder retraction.

Assuming consistent material properties of each gallbladder

and a linear spring relationship, the 3D point cloud feature

vector f7 delivers information about the current tension of

the gallbladder at the dissection line. This is important to

understand the current gallbladder tension and the necessary

retraction movement to achieve the desired tension at the next
dissection point.

B. Movement Prediction and Generation

To generate a robot trajectory based on the extracted 3D

point cloud feature vectors, DKMP utilizes a neural network-

based movement prediction and ProMP to generated the gall-

bladder retraction trajectory (Figure 2).

The movement prediction uses the extracted 3D point cloud

feature vectors, based on domain knowledge, as its input

features. We use a feedforward neural network to predict

the target point of the gallbladder retraction trajectory. The

feedforward neural network gθ maps the 3D point cloud fea-

ture vectors f = (f1, f2, f3, f4, f5, f6, f7)
T to the gallbladder

retraction endpoint pend = gθ(f). We use a feedforward

neural network consisting of 8 layers with 128 neurons and

ReLU activations. The layers are divided into two blocks

of 4 layers with a skip connection added between the two

blocks. The skip connection is similar to the ones used in the

ResNet architecture, which improve the optimization process

for deeper neural networks [25]. Using the collected datasets

of gallbladder retraction demonstrations on the phantom and

ex vivo porcine livers, the weights θ of the feedforward neural

network gθ are trained to convergence by backpropagation

using the Adam optimizer with an initial learning rate of

0.0001 and a step-wise reduction schedule. We use the mean

squared error (MSE) loss over all N trajectories between the

predicted gallbladder retraction trajectory endpoint pend,p and

the desired gallbladder retraction trajectory endpoint pend,d

for training:

min
θ

1

N

N∑
i=1

‖pend,p − pend,d‖2 . (2)

To generate a complete trajectory for executing the gallblad-

der retraction with a robot, we utilize ProMP [26], [27]. ProMP

represent movement primitives as probabilistic distributions

over the demonstrated trajectories, which enables the utiliza-

tion of probabilistic operations for improved generalization.

We use a ProMP with 30 normalized Gaussian basis functions

(10 for each dimension) to represent the gallbladder retraction

trajectory. Using the gallbladder retraction demonstrations of
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Fig. 3. The point cloud landmarks of the gallbladder retraction are selected based on domain knowledge by the clinical expert. The surgical landmarks
include the lowest point of the liver bed, the left-most point and right-most point of the dissection line, the next dissection point on the dissection line, and
the grasping point on the phantom (a) and ex vivo (b) gallbladder. The surgical landmarks are manually extracted from the point cloud using a graphical user
interface (c).

the datasets, we train the weights for the 30 basis functions

through maximum likelihood estimation using the Expectation

Maximization algorithm [28]. In order to generalize the gall-

bladder retraction to predicted trajectory endpoints pend,p of

the movement prediction, we utilize the conditioning ability

of ProMP to modulate the gallbladder retraction trajectory.

III. EXPERIMENTAL SETUP

A. Surgical Setup

To realize and validate the semi-autonomous robotic assis-

tance for cholecystectomy, we introduce a surgical setup for

phantom and ex vivo surgeries. A critical activity during chole-

cystectomy involves retracting the gallbladder to ensure its

safe separation from the liver bed. Poor tension results in bad

exposure, that may lead to mistakenly dissecting into the liver

or gallbladder, potentially causing liver bleeding or gallbladder

perforation. Both could result in relevant complications, such

as postoperative bleeding and infection. Traditionally, this

retraction task is performed by a surgical assistant with one

hand while using the other hand to control the endoscope

(i.e., intra-abdominal camera). We develop a semi-autonomous

robotic assistance for this retraction task, while the dissection

task is still performed by the surgeon. The robotic assistance

is activated by the surgeon and uses visual information to

predict and execute the gallbladder retraction for tensioning

the gallbladder.

For the implementation and evaluation of the semi-

autonomous robotic assistance, we simplify the minimally in-

vasive in vivo setup. The surgeries are performed on a surgical

liver phantom and ex vivo porcine livers. The phantom [24]

uses silicone-based tissue and latex gallbladders to replicate

the gallbladder retraction and separation on ex vivo porcine

livers. While the phantom enables the same surgical task

as ex vivo porcine livers, the retraction forces of the latex

gallbladders vary in comparison to ex vivo gallbladders. In

order to translate the imitation learning methods to real tissue,

we use fresh-frozen ex vivo porcine livers from the local

abattoir with the gallbladder still attached. The gallbladder

is separated using Maryland scissors for the phantom and ex
vivo scenario. The surgical setup used in this work has no

motion constraints, in contrast to the remote center of motion

setup of minimally invasive surgery. To capture the necessary

point cloud for manual landmark determination we use a stereo

camera (ZED2, Stereolabs Inc., USA). These simplifications

are a result of compromising between a setup for fast data

collection and a realistic surgical scenario, as the focus of this

work is the validation of the proposed DKMP method and its

usage to learn surgical tasks.

B. Robotic Setup
To collect the necessary data for training and evaluating

the DKMP method, we introduce a setup based on two

collaborative robotic arms, as presented in Figure 1. The

setup includes a stereo camera (ZED2, Stereolabs Inc., USA)

attached to a stationary robotic arm (UR5, Universal Robots,

Denmark) to provide static and consistent visual information

about the surgical scene. We use the second robotic arm

(Franka Panda version 1, Franka Robotics GmbH, Germany)

with an attached 6 degrees of freedom (DoF) force-torque sen-

sor (Koris Force & Safety Components GmbH, Germany) and

a custom-made mechatronic interface to control conventional

laparoscopic instruments, here a grasper (Karl Storz SE &

Co. KG, Germany) to retract the gallbladder. We implemented

a teleoperation mode to collect expert demonstrations using

an XBox Controller (Microsoft, USA) and an autonomous

mode for trajectory determination and execution with our

proposed method. While gallbladder retraction is performed

autonomously using a robotic assistance system, gallbladder

separation is performed manually by the surgeon. Using this

setup, we perform gallbladder removal surgeries on a surgical

liver phantom and ex vivo porcine livers. Overall, this robotic

setup enables extensive data collection for training and evalu-

ation of the imitation learning methods.
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C. Dataset Acquisition

To train and evaluate our proposed method for gallbladder

retraction, custom datasets with teleoperated demonstrations

on the phantom and ex vivo porcine livers are created. We

utilize the experimental setup (Figure 1) for the data collection

process. Each demonstration includes trajectories with position

and force information, as well as visual information (RGB

image and point cloud) about the surgical scene captured from

the stereo camera. To collect the tool position and force tra-

jectories of the retraction demonstrations, we use the internal

encoders of the Franka Panda robot arm and the external

6 DoF force-torque sensor. We collect two separate datasets

with gallbladder retractions based on one phantom with latex

gallbladder and two ex vivo porcine livers. The gallbladder

retraction demonstrations were performed by technical re-

search staff on the basis of explanations and demonstrations of

surgeons. We collected retraction demonstrations in different

variations, throughout the gallbladder removal process from

fully attached to nearly separated gallbladders.

Positions for the next dissection point on three different

areas along the dissection line were defined: left, middle and

right. This simplification was done to cluster the demonstra-

tions. The next dissection points were distributed over these

areas. During data collection, we ensured uniform distribution

over these three classes to reduce the intrinsic bias of the

dataset towards a certain next dissection point or area.

Based on this data collection procedure, the phantom dataset

includes 252 demonstrated gallbladder retractions (from one

phantom), while the ex vivo dataset contains 270 demonstra-

tions (from two ex vivo livers).

Both datasets contain the points of the trajectories, retraction

forces, RGB images, and RGB point clouds. The datasets are

each divided into a training set Dtrain, validation set Dval, and

test set Dtest, following a split ratio of 78.6%, 10.7%, and

10.7% for the phantom dataset and 73.4%, 13.3%, and 13.3%

for the ex vivo dataset. The data collected from the two ex
vivo porcine livers is equally distributed in training, test, and

validation set. The splits are a combined result of the number

of demonstrations and the uniform distribution over the three

classes of next dissection points.

D. Experimental Procedure on Test Datasets

To validate the proposed DKMP method, we evaluate

the gallbladder retraction prediction accuracy (both trajectory

points and endpoint) on phantom and ex vivo porcine liver test

datasets and compare it to the prediction of these points using

deep movement primitives (DeepMP) [21].

We compute the mean euclidean distance between the

predicted and demonstrated (i.e. desired) trajectory endpoints

pend (Equation 3) and trajectories τ (size T ) (Equation 4)

of all test dataset samples N . In addition, we calculate the

standard deviation of the euclidean distance. DeepMP use

end-to-end learning for mapping visual information directly

to robot trajectories. In contrast to the 3D point cloud feature

vectors in DKMP, which rely on domain knowledge, DeepMP

uses a convolutional autoencoder to extract a feature space

from the RGB image of the surgical scene. We use DeepMP

as the baseline for the evaluation to prove that DKMP’s

prediction performance is comparable to current end-to-end

based movement primitive methods.

The accuracy metrics provide an initial assessment of our

method’s performance, although precisely defining an endpoint

position is challenging. From a medical standpoint, it is

more about indicating the direction in which the gallbladder

must be stretched. Therefore, in addition to the prediction

accuracies, we evaluate DKMP’s prediction performance based

on the retraction directions. This evaluation is carried out by a

medical expert based on the plot results depicted in Fig. 4 a-

c. Successful retractions direct cranially, i.e. towards the back

of the gallbladder, which results in tension of the gallbladder

at the dissection line. Further, the retraction directions (left,

middle, or right) are distinguished depending on the location

of the next dissection point on the dissection line. A next
dissection point in the middle of the dissection line should lead

to a retraction direction towards the middle of the gallbladder,

while a next dissection point on the left should lead to a

retraction direction to the right and vice versa for the right side.

In addition to evaluating each method on the same scenario

that it was trained on, we also evaluate the performance of the

phantom-trained methods on the ex vivo dataset.

p =
1

N

N∑
i=1

‖pend,p,i − pend,d,i‖2 (3)

τ =
1

N

1

T

N∑
i=1

T∑
j=1

‖τend,p,i,j − pend,d,i,j‖2 (4)

E. Experimental Procedure in Phantom and Ex Vivo Surgeries

As a final evaluation, we apply the semi-autonomous as-

sistance with DKMP to phantom and ex vivo porcine liver

cholecystectomies. We use the same experimental setup as the

one used for the dataset collection (Figure 1). Using the setup,

a medical expert with 3 years of experience as a first surgical

assistant of cholecystectomies performed five surgeries on

the phantom and four surgeries on ex vivo porcine livers.

Additionally, one technical expert with 5 years of experience

with the cholecystectomy procedure conducted a single ex vivo
surgery. During the surgeries, the gallbladder retractions were

performed using the semi-autonomous assistance, while the

other steps of the cholecystectomy were performed manually

by the clinical and technical expert. The assistance was

initiated by the surgeon through a foot pedal (Figure 1) and

the surgical landmarks for calculation of the 3D point cloud

feature vectors were manually selected in the point cloud

using a graphical user interface (Fig. 3c). In addition to the

trajectory execution, we added a safety-force limit of 4 N for

the phantom surgeries and 2.5 N for the ex vivo surgeries to the

controller of the robotic arm, which we determined in previous

works [24], based on the recorded datasets.

Further, the system continues along the trajectory until the

force limit is reached, which makes it sometimes necessary

to pull beyond the predicted endpoint, following a retraction

vector. The retraction vector is constructed based on the vector

between the last two trajectory points.
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Fig. 4. Evaluation of DKMP on the phantom and ex vivo test datasets: a) Results of DKMP trained on phantom retractions and evaluated on the phantom
test dataset. b) shows the results of the evaluation on the ex vivo test dataset. c) Results of DKMP trained on ex vivo retractions and evaluated on the ex vivo
test dataset. The dissection line is subdivided into three areas where possible next dissection points can be and represented in their respective colors (left: red,
middle: yellow, left: blue). The related retraction trajectories are represented in matching colors. View from above. The gallbladder is visualized in grey.

TABLE I
GALLBLADDER RETRACTION PREDICTION ACCURACY OF DKMP AND

DEEPMP BASELINE ON PHANTOM AND ex vivo TEST DATASET.

Evaluated Trained Method Endpoint and trajectory acc.
on on p± σp / τ ± στ (in mm)
Phantom Phantom DKMP 17.7 ± 11.8 / 12.0 ± 6.3

DeepMP 19.3 ± 13.9 / 12.2 ± 7.3
Ex Vivo Phantom DKMP 44.7 ± 33.6 / 27.0 ± 18.7

DeepMP 58.4 ± 23.6 / 35.9 ± 12.6
Ex Vivo DKMP 12.2 ± 10.8 / 8.4 ± 5.6

DeepMP 10.5 ± 9.0 / 8.3 ± 4.0

The gallbladder retractions performed by the semi-

autonomous assistance were evaluated by the clinical expert

based on the correct retraction direction and force.

IV. RESULTS

A. Evaluation on Test Datasets

The test datasets include 27 unknown data samples for

the phantom dataset and 36 unknown data samples for the

ex vivo dataset, which are uniformly distributed over the

variations of the gallbladder retractions. The results of the

trajectory points and endpoint prediction accuracy of DKMP

and DeepMP are depicted in Table I. DKMP reaches an

endpoint accuracy of 17.7±11.8 mm on the phantom dataset

and 12.2±10.8 mm on the ex vivo dataset. In comparison,

DeepMP reaches an endpoint accuracy of 19.3±13.9 mm on

the phantom dataset and 10.5±9.0 mm on the ex vivo dataset.

When evaluating the phantom-trained methods on the ex vivo
dataset, DKMP and DeepMP show a much larger prediction

error of 44.7±33.6 mm and 58.4±23.6 mm respectively. The

accuracies τ ±στ of the trajectory points are stated in Table I.

Overall, DKMP and the DeepMP baseline show a comparable

prediction accuracy on the phantom and ex vivo dataset.

The phantom-trained DKMP predict the retraction direc-

tions when evaluated on the phantom test dataset (Figure 4a)

with a success rate of 100%. When evaluated on the ex vivo

dataset, the phantom-trained DKMP partially predict wrong

retraction directions, which is aligned with the observed higher

prediction error (Figure 4b) reaching a success rate of only

78%. The ex vivo-trained DKMP evaluated on the ex vivo
dataset predicts the correct retraction directions (Figure 4c)

with a success rate of 94%. Overall, the evaluation of DKMP

on the test datasets shows accurate prediction of the retraction

directions.

B. Evaluation in Phantom and Ex Vivo Surgeries

A total of 35 gallbladder retractions were performed during

five phantom surgeries (six with the next dissection point
being on the left of the dissection line, 17 in the middle, and

12 on the right) as depicted in figure 5a. The average time

spent for selecting the surgical landmarks in the graphical

user interface was 44 seconds, while the average time for

predicting the gallbladder retraction trajectory was 0.0034

seconds (on CPU). In total, 32 out of the 35 gallbladder

retraction trajectories during the phantom surgeries were rated

as successful by the clinical expert, resulting in a success

rate of 91%. During the five ex vivo porcine liver surgeries,

a total of 52 gallbladder retractions were performed (Figure

5b). Among these gallbladder retractions, 17 retractions had

the next dissection point on the left of the dissection line, 19

in the middle, and 16 on the right. The average time spent for

selecting the surgical landmarks in the graphical user interface

was 64 seconds, while the average time for predicting the

gallbladder retraction trajectory was 0.0053 seconds (on CPU).

The average total procedure time across the five experiments

was 41.8±21.8 minutes. The procedure times decreased from

67.2 and 59.0 minutes in the first two experiments to 38.2,

32.1, and 12.5 minutes in the final three experiments. In total,

48 out of the 52 gallbladder retraction trajectories during

the ex vivo porcine liver surgeries were rated as successful

by the medical expert, resulting in a success rate of 92%.

The semi-autonomous robotic assistance using DKMP resulted

in success rates of 91% and 92% during phantom and ex
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Fig. 5. Evaluation of DKMP during phantom and ex vivo surgeries in pre-clinical trials by medical expert: Gallbladder retraction trajectories with different
next dissection points on the dissection line defined by the clinical expert, during phantom surgeries (a) and ex vivo porcine liver surgeries (b).

vivo surgeries. During the pre-clinical evaluation on unseen

phantoms and ex vivo organs the gallbladder was always

pulled in relation to the retraction direction until the force

limit was reached, resulting in a favorable state for initiating

dissection.

V. DISCUSSION

Here, we propose domain knowledge-based movement

primitives (DKMP) to provide a semi-autonomous robotic sys-

tem for assistance during cholecystectomies and with the goal

of improving the interpretability of semi-autonomous robotic

assistance systems for surgeons, addressing the shortage of

clinical personnel and regulatory concerns inherent to surgical

applications.

When evaluated on the test datasets, we achieve per-

formance comparable to the DeepMP baseline. However, a

key distinction lies in the input features used by DKMP,

which are based on surgeon defined landmarks and calculated

3D point cloud feature vectors of the surgical scene. Thus,

they are easier to interpret compared to the learned features

of DeepMP. This improvement enhances the understanding

and trustworthiness of the system for surgeons. Furthermore,

our method benefits from ProMP conditioning, resulting in

smoother trajectories compared to the learning of complete

ProMP trajectories used in DeepMP. DKMP accurately pre-

dicts the retraction directions when trained and evaluated on

the same scenario (phantom or ex vivo), achieving success

rates of 100% and 94%, respectively. However, when DKMP

was trained solely on phantom data and applied to ex vivo

organs the success rate was only 78%. This indicates that

the phantom and ex vivo organs differ in their biomedical

properties, so that a training on real tissue is necessary to

achieve the desired behavior. Moreover, the trajectories on the

phantom are more spread out compared to the ones on the

ex vivo porcine livers. These observations can be explained

with the difference in material properties of the phantom

and ex vivo porcine livers, as presented in prior work [24].

The development of phantoms with more realistic material

properties could close this gap between the phantom and ex
vivo tissue.

The potential of DKMP was further demonstrated in phan-

tom and ex vivo surgeries, where we achieve a rate of 91%

and 92% of successful gallbladder retractions. Notably, the

method demonstrated effective performance with real ex vivo
tissue, further supporting its applicability in clinical settings.

For the trajectories during ex vivo surgeries, our method

learned a combination of stretching the gallbladder in the

right direction and subsequently following the gallbladder’s

natural curvature, as depicted in Figure 5b. This indicates that

retraction based on single point prediction is insufficient and

highlights the advantages of our trajectory generation. These

findings highlight the potential of DKMP as a reliable and in-

terpretable tool for robotic surgical assistance, addressing both

performance and interpretability requirements. In comparison

to the test dataset evaluation, the retraction trajectories of the

pre-clinical trials are more spread out, which can be explained

with larger variations of next dissection points used by the

medical expert during surgeries compared to demonstrations

in the dataset conducted by the technical research staff. The

medical expert used next dissection points, distributed along

the entire dissection line. To present our results more easily,

all next dissection points were categorized in one of the three

classes (left, middle, right).

Despite the promising results, DKMP has several limitations

that will be addressed in future work. Currently, the detection

of surgical landmarks relies on the surgeon identifying them

through a graphical user interface (GUI). The focus of this

work was to solve trajectory generation and the pre-clinical

implementation of a robotic assistance system. As works

from the field have already proven the feasibility of feature

detection and segmentation of point clouds [29], [30], future

developments should focus on integrating robust algorithms

for the automatic detection of surgical landmarks. Addition-

ally, although the input and output of the neural network-

based movement prediction in DKMP can be interpreted, the

decision-making process within the neural network remains

a black box. This lack of transparency in the prediction

mechanism poses challenges for understanding and validating

the system’s behavior under diverse surgical conditions.

While the evaluation of the semi-autonomous robotic as-
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sistance system in phantom and ex vivo surgeries shows

promising results, there are still several challenges towards

clinical adoption. The use of a conventional stereo camera

restricted the experimental setup to mimicking minimally

invasive surgery by performing ”open” surgery with laparo-

scopic instruments (see Figure 1). With a 3D endoscope, the

experimental setup can be adapted for laparoscopic technique

with laparoscopic instruments and with the upper face of the

liver facing downwards, which more faithfully depicts the

in vivo scenario with variable lighting conditions and robot

motion constraints. Finally, although DKMP have been shown

to perform well with a limited amount of data, collecting

sufficient and diverse datasets for in vivo scenarios remains

a significant challenge. Addressing these limitations is critical

for advancing the system towards clinical adoption and en-

hancing its reliability in real-world surgical applications. The

proposed DKMP framework presents several opportunities for

future research and development in robotic surgery assistance.

VI. CONCLUSION

This study introduces a semi-autonomous robotic assistance

system for gallbladder retraction during minimally invasive

cholecystectomy. DKMP generate gallbladder retraction mo-

tions by combining 3D point cloud feature vectors based on

domain knowledge with neural network-based movement pre-

diction and ProMP for trajectory generation. The experiments

show that DKMP successfully learn gallbladder retraction

on phantoms and ex vivo porcine livers. While resulting

in comparable success rates, DKMP improve the surgeon’s

ability to interpret the robot behavior through the usage of

domain knowledge compared to end-to-end imitation learning

methods, such as DeepMP. In summary, DKMP offer a data-

efficient and interpretable method for learning complex sur-

gical skills, such as gallbladder retraction. Future works plan

to automate the extraction of surgical landmarks to enable a

simplified user interface for surgeons, as well as the extension

of the system to provide assistance in additional phases of

cholecystectomy as well as other procedures.
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[16] K.-H. Oh, L. Borgioli, M. Žefran, V. Valle, and P. C. Giulianotti,
“Autonomous dissection in robotic cholecystectomy,” arXiv preprint
arXiv:2503.00666, 2025.

[17] A. Pore, E. Tagliabue, M. Piccinelli, D. Dall’Alba, A. Casals, and
P. Fiorini, “Learning from demonstrations for autonomous soft-tissue
retraction,” 2021 International Symposium on Medical Robotics (ISMR),
10 2021.

[18] K. L. Schwaner, D. Dall’alba, P. T. Jensen, P. Fiorini, and T. R.
Savarimuthu, “Autonomous needle manipulation for robotic surgical
suturing based on skills learned from demonstration,” 2021 IEEE
17th International Conference on Automation Science and Engineering
(CASE), 2021.

[19] H. Su, A. Mariani, S. E. Ovur, A. Menciassi, G. Ferrigno, and E. D.
Momi, “Toward teaching by demonstration for robot-assisted minimally
invasive surgery,” IEEE Transactions on Automation Science and Engi-
neering, vol. 18, pp. 484–494, 2021.

[20] P. M. Scheikl, et al., “Movement primitive diffusion: Learning gentle
robotic manipulation of deformable objects,” IEEE Robotics and Au-
tomation Letters, vol. 9, pp. 5338–5345, 2024.

[21] O. Sanni, G. Bonvicini, M. A. Khan, P. C. López-Custodio, K. Nazari,
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