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Abstract— In both industrial and service domains, a central
benefit of the use of robots is their ability to quickly and reliably
execute repetitive tasks. However, even relatively simple peg-in-
hole tasks are typically subject to stochastic variations, requir-
ing search motions to find relevant features such as holes. While
search improves robustness, it comes at the cost of increased
runtime: More exhaustive search will maximize the probability
of successfully executing a given task, but will significantly delay
any downstream tasks. This trade-off is typically resolved by
human experts according to simple heuristics, which are rarely
optimal. This paper introduces an automatic, data-driven and
heuristic-free approach to optimize robot search strategies. By
training a neural model of the search strategy on a large set of
simulated stochastic environments, conditioning it on few real-
world examples and inverting the model, we can infer search
strategies which adapt to the time-variant characteristics of the
underlying probability distributions, while requiring very few
real-world measurements. We evaluate our approach on two
different industrial robots in the context of spiral and probe
search for THT electronics assembly.*

I. INTRODUCTION

Despite years of research, manipulating objects whose
pose can only be determined with uncertainty is still very
challenging for robots. In service robotics, examples include
the manipulation of occluded objects or imprecise pose
estimation due to noisy perception. Industrial applications
often require robots to manipulate objects whose pose in
the workspace is known only within given tolerances and
whose precise pose varies stochastically between cycles.
In the context of electronics assembly, for example, the
poor positioning accuracy of conveyor belts, manufacturing
tolerances of parts from different suppliers or wear and tear
of materials make it impossible to precisely know the pose of
connectors or holes during offline programming [1]. Force-
controlled search strategies, which probe the environment
with a defined series of motions until a change in forces is
detected, are a commonly used method for resolving such
uncertainties [2]. While greatly increasing the robustness
of robot tasks, however, force-controlled search comes at
the cost of increased time required to complete the task.
Determining an optimal set of search motion parameters,
which maximizes robustness while keeping execution times
minimal, currently requires lengthy parameter tuning by
human robot programmers. We posit that a method for the
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Fig. 1. Differentiable Programming in Stochastic Environments (∂PSE)
leverages transfer learning and differentiable robot program representations
to optimize search motions in the presence of stochastic noise.

automatic parameterization of search strategies must meet
four crucial requirements to be applicable for most real-world
use cases:

1) Heuristic-freeness: It must make no prior assumptions
about the underlying stochastic processes.

2) Data efficiency: It must require only unsupervised or
self-supervised data. The amount of real-world train-
ing data must be small and data collection must not
interfere with the completion of regular tasks, such as
the ongoing operation of a production line.

3) Handling nonstationary processes: It must be robust
to nonstationary noise processes whose characteristics
change over time.

4) Black-box optimization: It must be agnostic with re-
spect to the concrete robot program representation
to ensure cross-domain applicability and compatibility
with various robot frameworks.

In this paper, we introduce Differentiable Programming
in Stochastic Environments (∂PSE), a heuristic-free, data-
efficient black-box approach to optimizing robot search mo-
tions even in the face of nonstationary stochastic processes.

Our contribution is threefold: (1) A method for learning
predictive models of robot skills which capture the stochastic
characteristics of the environments they are executed in. To
that end, we present a transfer-learning based approach to
efficiently condition such models on the stochastic environ-
ment at hand. By pre-training in simulated environments and
fine-tuning on a small dataset of real-world action executions,
the learned models predict an expected robot trajectory given
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the robot skill’s parameters (e.g. the search pattern of a probe
search) and the (learned) probability distributions governing
the environment. We show that continuous fine-tuning can
keep the learned models synchronized with time-varying,
nonstationary stochastic environments.
(2) A method to optimize motion parameters to ensure
minimal search time and maximal roboustness in the face
of nonstationary stochastic environments. We embed these
environment-conditioned models in a state-of-the-art frame-
work for differentiable robot programming [3], in which
robot programs can be expressed as differentiable computa-
tion graphs. A gradient-based optimizer jointly optimizes the
program’s input parameters with respect to relevant metrics
such as cycle time or failure rate.
(3) Experimental validation of our method in two real-world
mechanical and electronics assembly tasks for both stationary
and nonstationary environments, and empirical comparison
against several meta-learning approaches.

II. RELATED WORK

a) Robot program parameter optimization: Several
black-box optimizers for robot program parameters have
been proposed, most often relying on zero-order methods
such as evolutionary algorithms [4], [5], whose requirement
of repeatedly executing the robot program for every opti-
mization renders them impractical for real-world application.
Bayesian optimization [6]–[8] avoids this, but requires the
goal function to be known at data collection time, is difficult
to extend to nonstationary processes [9], [10] and cannot ex-
ploit gradient information. First-order neural network (NN)-
based optimizers have been proposed [11], [12], but remain
impractical in productive environments due to their data
requirements and reliance on supervised or reinforcement
learning.

b) Differentiable programming (∂P): In ∂P, programs
are composed of differentiable operations, which permits
the first-order optimization of a program’s parameters with
respect to its outputs [13]. PDP [14] is a ∂P framework for
differentiable motion control. However, PDP is not black-
box, cannot represent hierarchical programs and the learned
parameters become outdated in nonstationary environments.
SPI [3] is a black-box ∂P framework for representing robot
programs, which, like Bayesian optimization, relies on sur-
rogate models learned via unsupervised learning. It exploits
gradients for efficient optimization, but assumes stationarity
and requires substantial amounts of real-world data. We
leverage SPI for optimization, but avoid its stationarity
assumption and drastically reduce the amount of required
real-world data.

c) Transfer learning (TL): TL is concerned with im-
proving the performance of systems trained on some source
task on different, but related target tasks [15]. In sequential
TL schemes, a NN first learns a shared set of features on a
large source dataset before fine-tuning on a much smaller
target dataset [16]. In natural language processing [17]–
[21] and computer vision [22]–[24], unsupervised pretraining
outperforms learning from scratch [25], [26], particularly for

small target datasets [27]. In robotics, sequential TL has been
applied for inter-robot learning [28], Sim2Real adaption [29]
or few-shot learning [30], [31]. We show that in the context
of parameter optimization, sequential TL not only greatly
reduces the amount of required real-world data, but also
that continuous fine-tuning as a form of “lifelong learning”
enables parameter optimization in nonstationary stochastic
environments.

d) Meta-learning: Meta-learning is concerned with ef-
ficiently learning to solve unseen tasks and has been applied
with particular success in few-shot problems [32], [33].
While some approaches such as Meta Networks [34] or
Prototypical Networks [35] propose specific architectures,
model-agnostic methods such as MAML [36] or Reptile
[37] optimize arbitrary networks by learning initial network
parameters particularly conducive to test-time fine-tuning.
We provide an evaluation of several model-agnostic meta-
learners as alternatives to our proposed TL-based approach
in the context of search strategy parameter optimization.

III. PARAMETER OPTIMIZATION IN STOCHASTIC
ENVIRONMENTS

A. Definitions and Notation

As an example for an industrial assembly task subject
to stochastic variations, we consider a peg-in-hole task,
where the actual pose of the hole can be described by a
random variable Ht drawn from the (possibly nonstationary)
stochastic process {Ht}. Because the actual hole pose at
time t is uncertain, an industrial robot will require the
use of search strategies to perform this task reliably. We
define a search strategy as a robot program which accepts
a vector of parameters x ∈ X and executes a sequence
of end effector motions until a hole has been found or
some other termination criterion was reached. Intuitively,
a robot program can be defined as a function π mapping
some program parameters x to the tool center point (TCP)
trajectory y resulting from executing it. However, because
this trajectory depends on the uncertain pose of the hole,
we model it instead as a random variable Yt, which takes
values y ∈ Y according to P (Yt|π, x,Ht), the probability
distribution over trajectories resulting from the execution of
program π at time t with inputs x and hole distribution Ht.

B. Parameter Optimization via Differentiable Programming

In the context of robotics, ∂P approaches center around
learning or constructing a differentiable representation of π,
which permits to backpropagate losses over the program’s
outputs to its inputs x. SPI [3] approximates P (Yt|π, x) by
training an auxiliary, differentiable graph of NNs (“shadow
program”, π̂) via unsupervised learning from past executions
of π. It then optimizes the program’s input parameters by
inverting the shadow program via gradient descent in the
shadow program’s input space. This optimization can be
performed with respect to some user-defined function L of
the shadow program’s output (the expected trajectory ŷ),
such as cycle time. SPI’s compatibility with most existing
robot program or skill frameworks and exclusive reliance on



Fig. 2. Overview of our proposed approach. ∂PSE enables the data-efficient, heuristic-free optimization of arbitrary parametric search strategies by
pretraining a predictive model (“shadow program”) of the search strategy on a large simulated dataset (1), finetuning it on a few samples of the concrete
real-world environment (2), and inferring optimal search parameters via SPI (3). By repeatedly finetuning on data collected at test time (4), nonstationary
noise processes can be addressed.

unsupervised learning are highly advantageous in industrial
robot applications. SPI is a heuristic-free and black-box
optimizer according to the criteria outlined in section I.
In its model training phase, however, SPI requires training
tuples (xi, yi) which cover the region of the input space X
relevant for optimization. This effectively requires sampling
the input space during data collection, which is impractical
in a running production line. Moreover, if features of the
environment such as the poses of holes follow nonstationary
stochastic processes, the learned shadow program imme-
diately becomes outdated as the probability distributions
change over time.

C. Environment-Conditioned Skill Models

Transfer-learning methods are capable of efficiently adapt-
ing learned models to changing data distributions [38]. By
treating the model learning phase of SPI as a TL problem and
applying a pretraining and finetuning technique, we obtain
a heuristic-free black-box differentiable program represen-
tation which supports the optimization of search motions
in the face of nonstationary noise processes with high data
efficiency.
We first define a task T =

{
{Ht}, P (Yt|π, x,Ht)

}
: For a

stochastic process {Ht} generating hole distributions, SPI
must learn the probability distribution over the resulting
trajectories when executing program π with inputs x in
this environment. The corresponding task dataset DT0

=
{(x0, y0), ..., (xN , yN )} for a task T0 consists of input-
trajectory pairs collected by executing π N times, each
time sampling a new hole distribution Hn from {Ht}0.
Following a pretraining/finetuning regime, we propose to
pretrain SPI’s shadow program on a large source dataset
DS =

⋃M
m=0DTm

, the collection of M task datasets, each
for a different hole-distribution-generating process {Ht}m
(see fig. 2 (1)). The shadow model can then be finetuned on
the much smaller target dataset DT = {DTcurr

} (see fig.
2 (2)), containing only data from the current task Tcurr -
in the case of a running production line, the input-trajectory
pairs from the last N executions of the program. The core
intuition is to learn a prior over many possible environments
(hole-distribution-generating processes, {Ht}m) offline and
finetune on the concrete process at hand.

1) Data efficiency: We found that for most peg-in-hole
tasks under uncertainty, only N=128 samples per task are
required to effectively finetune on the concrete task. More-
over, we show that pretraining on a large (M=1000, N=128)
source dataset collected in a simulated environment and
finetuning on one single real-world target task bridges the
sim-to-real-gap sufficiently for SPI to perform meaningful
parameter optimization in the real-world environment. Both
spiral and probe search strategies considered in experiments
IV-A and IV-B involve force-sensitive interactions with the
environment; in both cases, pretraining exclusively on sim-
ulated data sufficed to find near-optimal parameterizations
in the real world. This efficiency can be attributed to the
fact that after pretraining, the shadow program can rely
on useful priors at two levels: The differentiable motion
planner at the heart of the SPI shadow program architecture
provides a strong prior for the expected trajectory in an ideal
environment, and the new pretraining step trains a prior over
a wide range of possible environments, providing a very good
initialization of the shadow program for finetuning.

2) Passive data collection: As a corollary of these strong
priors, the proposed pretraining/finetuning regime avoids the
need to sample the parameter space in the real production
line. Because the relationship between program inputs and
outputs is learned across a wide variety of environments
and for inputs x sampled from the entire parameter space,
the finetuning dataset DT does not require such diversity
anymore. In fact, we find that SPI still performs meaningful
parameter optimization even if all finetuning examples in
DT contain the same inputs, i.e. DT = {DTcurr} =
{(x0, y0), ..., (x0, yN )}. Consequently, the required 128 real-
world finetuning examples can be collected in a completely
passive manner by simply collecting robot trajectories from
the running assembly line, without needing to sample a
diverse set of program parameters and potentially disrupting
production.

3) Continuous learning and optimization for nonstation-
ary processes: Nonstationary processes require continuous
re-optimization of program parameters, ideally at every
timestep t. With the proposed pretraining/finetuning regime,
this becomes straightforward: After finetuning once, running
SPI’s optimization step and updating the program with the
optimized parameters, the next trajectory at timestep t + 1



can be observed and added to the finetuning dataset. SPI’s
shadow program can then be finetuned again and the optimal
parameters for timestep t + 2 can be computed. Repeating
this cycle of finetuning the shadow program and optimizing
program parameters ensures that the shadow program’s esti-
mation of P (Yt|π, x,Ht) does not deteriorate as t increases.
We implement DT = {DTcurr

} as a ring buffer of fixed size
N=128 to ensure that outdated data is eventually removed
from the finetuning dataset. To avoid catastrophic forgetting,
we finetune the original pretrained model at each iteration
instead of repeatedly finetuning the finetuned model.

IV. EXPERIMENTS

We validate our approach by comparing its performance
against state-of-the-art baselines on two real-world assembly
tasks involving spiral and probe search strategies, respec-
tively. We also evaluate its performance on several simulated
nonstationary processes and provide an empirical analysis of
our TL scheme with respect to possible meta-learning based
alternatives.

A. Spiral Search (stationary)

We consider the mechanical assembly task of inserting a
tightly-fitting cylinder into a hydraulic valve (see fig. 3). To
simulate realistic process variances, the position of the valve
body in the XY-plane is sampled from a bivariate Gaussian
mixture with six components, forming the stationary process
{Ht} = Ht =

∑6
i=1 wiN (µi,Σi). To successfully perform

the insertion, the robot follows a spiral search strategy,
maintaining a constant pushing force against the surface until
dropping into the hole. We seek to optimize the parameters
of the search strategy (spiral position, orientation, extents,
number of windings, velocity and acceleration) to minimize
a linear combination of cycle time Lcycle(y) and failure
probability Lfail(y), both of which can be expressed in
terms of the expected trajectory y output by ∂PSE’s shadow
program. ∂PSE is pretrained on a source dataset collected
by simulating spiral searches on Mtrain = 1000 different
Gaussian mixtures with Ntrain = 128 sampled hole poses
each, and finetuned on Ntest = 128 training examples for the
Mtest = 1 concrete hole distributions at hand.* We compare
against the following baselines:

1) A fixed parameterization by a human expert
2) A near-optimal Principal Component Analysis (PCA)-

based heuristic fitting the spiral orientation and extents
to the ground-truth valve body poses

3) µ + λ nondominated sorting genetic algorithm
(NSGA-II) [39] with µ = λ = 25

We repeat the experiment for 10 different distributions {Ht}
in a purely simulated environment, and for 6 different {Ht}
on a real UR5 robot.

The results are shown in figure 3. ∂PSE provides near-
perfect success rates and significantly outperforms NSGA-II
and the human expert, effectively replicating the results in [3]

*Simulations were conducted in a lightweight scripted environment mod-
elling Newtonian physics, damping and friction.

with significantly fewer real-world training examples. With
respect to cycle time, ∂PSE outperforms both the human and
NSGA-II on the real task. The poor real-world performance
of NSGA-II illustrates the fundamental disadvantage of most
heuristic-free, zero-order black-box optimizers, which they
require a large amount of program executions to converge on
a good solution. Here, was allowed 250 executions per test
distribution, nearly twice ∂PSE’s real-world data requirement
of 128, suggesting that ∂PSE owes its data efficiency at least
partly to its exploitation of gradient information.

B. Probe Search (stationary)

To evaluate ∂PSE for a more complex search strategy,
we consider the assembly of through-hole technology (THT)
electronics components, where the pose of mounting holes
on a printed circuit board (PCB) is subject to stationary
noise {Ht} with an a priori unknown distribution, e.g. from
imprecise positioning on a conveyor belt. To avoid scratching
the surface of the PCB, probe search repeatedly touches the
surface according to a predefined search pattern until the
THT component’s pins drop into the holes (see fig. 2 (4)).
The search pattern is typically defined as a regular grid,
though the search strategy can be significantly optimized
by tailoring the pattern to the underlying noise distribu-
tion. Finding the optimal pattern corresponds to a high-
dimensional optimization problem over the 32-dimensional
input vector of the probe search strategy, describing the 16
touch points in the XY-plane. We use ∂PSE to automatically
optimize the touch points without assuming knowledge about
the hole distribution. ∂PSE is trained on Mtrain = 1000
simulated training tasks (hole distributions) with Ntrain =
128 probe searches each and finetuned on Ntest = 128
probe searches over Mtest = 1 concrete hole distribution.
We compare against the following baselines:

1) A fixed 4x4 grid covering the complete search region
2) A heuristic tailored specifically to probe search, which

fits a 16-mode Gaussian Mixture Model (GMM) to the
last points of those trajectories in the finetuning dataset
where the search was successful

3) µ+λ NSGA-II with µ = λ = 100 (sim) or µ = λ = 30
(real)

The experiment is repeated for 10 different multimodal Gaus-
sians {Ht} in a simulated environment, and for 6 additional
distributions on a real Fanuc industrial robot. Both ∂PSE
and NSGA-II minimize Lfail(y), the probability of search
failure. We also assess the effects of adding additional regu-
larization to ∂PSE, penalizing either the L1 distance from the
initial parameterization (Linit, a heuristic-free regularizer) or
the smallest distance between any two optimized touch points
(Lcdist, a heuristic regularizer specific to probe search).

The results are summarized in figure 4. With both reg-
ularizers, the search patterns produced by ∂PSE reflect
the underlying hole distribution without overfitting to its
modes (see fig. 4b and 4c). Quantitatively, both variants
of ∂PSE outperform the human and NSGA-II baselines in
both simulated and real environments. While the application-
specific heuristic is nearly optimal in the simulated scenario,
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Fig. 3. Results for experiment IV-A (spiral search, stationary): Experiment setup (a) and examples for an optimized search pattern generated by ∂PSE
(b). Heuristic-free ∂PSE outperforms the human and NSGA-II baselines and is competitive with an application-specific heuristic (c).

(a) a (b) b (c) c (d) d

Fig. 4. Results for experiment IV-B (probe search, stationary): Experiment setup (a) and examples for optimized search patterns generated by ∂PSE with
the Linit (b) and Lcdist (c) regularizers. Heuristic-free ∂PSE outperforms the human and NSGA-II baselines and is competitive with an application-specific
heuristic (d).

∂PSE with Lcdist regularization is competitive with it in
the real-world environment, while avoiding any assumptions
on the underlying hole distributions. The data efficiency of
∂PSE is particularly apparent when compared to NSGA-II:
In the real-world scenario, NSGA-II yielded subpar results
despite being allowed 300 executions, more than twice
∂PSE’s 128. ∂PSE achieves this efficiency by transferring
knowledge learned from simulated data during pretraining,
and by exploiting gradient information during optimization.

C. Probe Search (nonstationary)

In a further series of experiments, we analyze the capac-
ity of ∂PSE to optimize search strategies with respect to
nonstationary processes. We consider the same task as in
experiment IV-B, but omit the stationarity assumption on
{Ht}. We evaluate ∂PSE in a simulated environment on three
different nonstationary processes:

1) Linear drift, where the modes of {Ht} are translated
by a constant offset at each timestep t

2) Brownian motion, where the modes of {Ht} are trans-
lated by an offset sampled from a bivariate unimodal
Gaussian at each timestep t

3) Shift, where the modes of {Ht} are translated by a
uniformly random offset with probability pshift =
0.05 at each timestep t

TABLE I
RESULTS OF EXPERIMENT IV-C: FAILURE RATES FOR DIFFERENT

PARAMETER OPTIMIZERS AND STOCHASTIC PROCESSES. ∂PSE WITH

THE Lcdist REGULARIZER REDUCES FAILURES BY UP TO 53% OVER 100
TIMESTEPS.

Drift Brownian Shift

None 0.679 0.679 0.600
∂PSE (Lfail) 0.458 0.605 0.472
∂PSE (Lfail + Linit) 0.556 0.616 0.406
∂PSE (Lfail + Lcdist) 0.318 0.494 0.339

The results are summarized in table I. Both unregularized and
regularized ∂PSE increase the probability of success by over
20% over short time horizons, confirming the results from
experiment IV-B even as the underlying distributions change
over time. For long-horizon processes, the benefits of ∂PSE
are more pronounced, illustrating the capacity of ∂PSE to
continuously produce suitable parameterizations over longer
timescales.

D. Comparison with Meta-Learning Approaches

Meta-learning, learning to efficiently learn from few train-
ing examples, is a powerful paradigm fundamentally related
to ∂PSE’s transfer-learning scheme and has become state
of the art for solving few-shot learning problems. We find
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motion). For both noise processes, the search pattern (blue) follows the hole distribution, while respecting the constraints imposed by the regularizer.

TABLE II
RESULTS OF EXPERIMENT IV-D: COMPARISON OF

PRETRAINING/FINE-TUNING AGAINST META-LEARNING ALTERNATIVES

FOR TRAINING ∂PSE’S SHADOW PROGRAM.

Learning algorithm Traj. loss Success acc.

Pretrain 0.80 0.72
Pretrain + Dropout 0.83 0.71
MAML (5) + Dropout 0.94 0.64
MAML (5) 0.95 0.64
FOMAML (5) 0.96 0.62
FOMAML (128) 0.99 0.58
Reptile (128) 1.35 0.56

that in the context of gradient-based parameter optimiza-
tion, simple pretraining and fine-tuning outperforms various
state-of-the-art meta-learning approaches. We substantiate
our finding by comparing ∂PSE as proposed in III-C with
variants of ∂PSE, where the pretraining and fine-tuning of
the shadow program is replaced by the meta-learning and
adaptation schemes of first- and second-order model-agnostic
meta-learning (MAML) [36] and Reptile [37]. Comparing
against model-agnostic approaches ensures comparability,
as the network architectures as well as the training data
remain unchanged. Due to the high memory requirements
of second-order MAML, it could only be evaluated for
meta-test sets of size N = 5 (vs. ∂PSE’s N = 128). We
evaluate first-order MAML (FOMAML) for both N = 5
and N = 128 and Reptile for N = 128. As shown in
table II, the proposed pretraining and fine-tuning scheme
results in a better predictor than all tested meta-learning
alternatives. The poor performance of second-order MAML
is likely due to its limitation to only 5 adaptation examples,
which do not suffice to learn meaningful characteristics of
the underlying distributions. However, the poor performance

of FOMAML on the larger meta-test set indicates that the
benefits of meta-learning diminish as the number of meta-
test examples increases. This suggests that simpler, much less
computationally intensive transfer-learning based approaches
can compete with and even outperform meta-learning in the
small-data regime (between tens and hundreds of training
examples). Our findings also confirm the intuition of Sun
et al. [40] that meta-learning is most effective for shallow
network architectures and requires a large amount (M ∼
100k) of meta-training tasks. The chained deep residual
GRUs at the core of SPI for precise trajectory prediction
and the limited amount of pretraining tasks (M = 1000)
likely limit the utility of meta-learning for gradient-based
parameter optimization, at least in conjunction with ∂PSE.

V. CONCLUSION AND OUTLOOK

In this paper, we propose Differentiable Programming
in Stochastic Environments (∂PSE), a novel approach to
optimizing robot search strategies. By conditioning learned
predictive models of robot skills via transfer learning and
embedding them in a differentiable program representation,
we obtain a heuristic-free optimizer for arbitrary search
strategies. By applying our method to two real-world as-
sembly tasks with stationary process noise and one sim-
ulated nonstationary process, we demonstrated that ∂PSE
outperforms other heuristic-free optimizers and is competi-
tive with task-specific, hand-crafted heuristics. ∂PSE permits
the effective automation of the labor-intensive optimization
phase of robot workcells, while its extreme data-efficiency
as well as its black-box nature renders it equally suitable
for service robotics tasks. Our future work is focused on
extending ∂PSE to applications beyond search strategies,
such as force-controlled insertion or grasping. In addition,
we are exploring the inference of task-specific goal functions
from human demonstrations and symbolic knowledge.
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