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Abstract
According to the guiding principles of Industry 4.0, edge computing enables the data-sovereign and near-real-time processing 
of data directly at the point of origin. Using these edge devices in manufacturing organization will drive the use of industrial 
analysis, control, and Artificial Intelligence (AI) applications close to production. The goal of the EASY project is to make the 
added value of edge computing available by providing an easily usable Edge-Cloud Continuum with a runtime environment 
and services for the execution of AI-based Analysis and Control processes. Within this continuum, a dynamic, distributed, 
and optimized execution of services is automated across the entire spectrum from centralized cloud to decentralized edge 
instances to increase productivity and resource efficiency.
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1  Introduction

Industry 4.0 (I4.0) [13] denotes the technological change 
towards intelligent production in which Artificial Intel-
ligence (AI) methods, data analysis techniques, the Inter-
net of Things (IoT) and distributed systems are integrated 
into industrial processes. In this context, optimization and 
efficiency-increase of production processes is investigated 
[20, 22, 38]. The growing automation and interconnection 
of factories offers new opportunities, such as the promising 
use of edge nodes [46]. These are miniaturized computing 
devices located directly in the production environment. The 
exploration of the industrial potential of these edge nodes 
is addressed by the EASY project1 running from 2022 until 
the end of 2025. The acronym stands for “Energy-Efficient 
Analysis and Control Processes in the Dynamic Edge-Cloud 
Continuum for Industrial Manufacturing” and is the name 
of a German consortium funded by the Federal Ministry 
for Economic Affairs and Climate Action. In addition, an 
affiliated project financed by the Austrian Research Pro-
motion Agency contributes toward this research. Namely, 
the consortium consists of the following partners: Empolis 
Information Management GmbH (consortia leader), German 

Research Center for Artificial Intelligence (DFKI), Robert 
Bosch GmbH, Fraunhofer IOSB-INA, Trier University of 
Applied Sciences—Environmental Campus Birkenfeld, 
ArtiMinds Robotics GmbH, coboworx GmbH, and Salzburg 
Research.

Within EASY, this consortium aims to overcome tech-
nical barriers in industrial manufacturing by creating an 
open and standardized Edge-Cloud Continuum (ECC) that 
should enable the optimized execution of Analysis and Con-
trol Processes. This continuum is a distributed infrastructure 
that includes the described edge devices as well as a central 
cloud, and enables dynamic distribution of computations 
across all contained devices [35, 39]. AI methods are used 
to plan and execute both types of processes in the ECC. 
These methods can run both, centralized on the cloud and 
decentralized on the edge. The inclusion of the edge nodes 
allows analyzing the high-frequency data in near real-time, 
and also enables data protection for companies through non-
sharing. This standardized, freely available ECC should 
lower the entry barriers for small- and medium-sized enter-
prises to these technologies. To demonstrate and evaluate the 
described aspects, various prototypes are developed.

In the remainder of this paper, an overview of the archi-
tecture of the EASY project and the considered processes is 
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given in Sect. 2. In Sect. 3, the AI methods applied to these 
processes are presented. The use cases to demonstrate the 
project’s results are described in Sect. 4. Afterward, Sect. 5 
provides a summary and an outlook for future research in 
the context of our work.

2 � EASY Architecture and Processes

In this part, the overall EASY framework targeting the pro-
ject’s goals is presented. First, the basic architecture is 
introduced in Sect. 2.1. Then, the processes within this are 
described in Sect. 2.2 and classified in the Business Process 
Management (BPM) [12] research state.

2.1 � Architectural Overview

The ECC is a distributed environment composed of com-
puting and network infrastructure [24, 35, 39]. Here, edge 
devices offer local data processing and storage as well as ser-
vice execution, whereas the cloud provides the same func-
tions on a server network with higher capabilities. These 
edge nodes can be run by individual members (i.e., industrial 
companies) while a separate entity provides a central cloud 
platform. In the ECC, data and computations can be flex-
ibly moved between such edge devices and the cloud. This 
allows the transfer of data to the cloud to be minimized, as 
the compute resources available on the edge can be used to 
at least partially process the data. Therefore, the significant 
cost involved with large data transfers can be reduced. How-
ever, the cloud orchestrates the ECC and determines where 
analysis or control processes should be computed within 
the continuum. In addition, this architecture can address the 
issue of data privacy by allowing companies to avoid moving 
specific data to a cross-enterprise cloud solution. Therefore, 
certain assumptions such as the integrity of the cloud plat-
form provider have to be made.

We will develop such a continuum for the EASY project in 
the form shown in Fig. 1. The lowest level is formed by indi-
vidual assets on the production floor, such as manufacturing 
robots or IoT control components [21, 45]. These assets are 
usually constrained in terms of computing power. However, 
they can still be used to perform small computational tasks. 
To enhance the compute power at these positions, the assets 
are connected to edge nodes, which form the second-lowest 
layer. At these nodes and along the continuum, services can 
be run to process, aggregate, or simply pass data to other 
entities. Specialized computing infrastructure at the edge, 
such as compute clusters or big data storage, could also be 
employed before moving to the cloud. In this architecture, 
the path between the edge and the cloud is paved with differ-
ent layers of nodes providing increasing computational capa-
bilities. This enables a dynamic and optimized execution of 

AI services, in terms of metrics, e.g., the project’s namesake 
energy efficiency, but also other Green AI and Sustainable 
Software Engineering criteria [49], such as resource and 
data efficiency [23]. To identify and optimize such metrics 
required for measuring these values in the ECC, a refer-
ence model and an exemplary measurement method [17] are 
used as basis. Within the ECC, the AI services are stored in 
a central repository based on the Gaia-X architecture [47]. 
By using these services on the edge nodes, the data only 
requires transmission to the nearest one with sufficient 
resources and, in most cases, not all the way to the cloud.

2.2 � Processes in EASY

In EASY, we focus both on Analysis and Control Pro-
cesses and address these dynamically in the ECC using AI 
techniques: 

1.	 Analysis Processes: These processes are geared towards 
examination and analysis of data, e.g., based on IoT sen-
sor streams [45]. Considering this, local analyses such 
as visual quality control [32] or error detection [15] are 
to be carried out. Regarding the ECC, the analysis will 
identify the use of resources such as computing capac-
ity and energy consumption. In addition, aspects of the 
decentralized architecture that can increase data security 
are explored [10, 11].

2.	 Control Processes: These processes concern the man-
agement of the value creation processes, meaning 
the manufacturing facilities and their resources. This 
includes the dynamic allocation of these resources 
throughout the ECC, as well as the automated planning 

Fig. 1   An overview of the EASY architecture



KI - Künstliche Intelligenz	

of production processes and their flexible and correct 
execution [6, 27]. In addition to the sustainability crite-
ria, the processes should be robust and flexible so that in 
cases of deviations they can still be executed or adapted 
accordingly, even in cases of deviations [16] or changed 
metrics [6].

In the BPM research field, flexible analysis and produc-
tion processes have already been addressed [29]. Both pro-
cesses should focus on their resource efficiency, as crite-
rion [9] already specified above for each type. To consider 
this and other sustainability metrics accordingly, semantic 
information about the processes must be available [25] and 
provided in a suitable semantic structure [30]. This must be 
an appropriate digital representation of the devices in the 
ECC or the production resources, e.g., like a semantic Asset 
Administration Shell [4, 41]. The approaches mentioned so 
far rarely use extensive AI methods. However, these offer 
great potential for optimizing adaptive process management 
and go beyond manually performed adaptations [27, 33]. 
Therefore, the EASY project targets this issue in the ECC and 
in physical smart factories. The AI methods used to manage 
these processes are presented next.

3 � AI Methods in EASY

In the EASY project, various established AI methods address 
processes in the ECC and are investigated for optimizing 
resource usage. In the following, we present the techniques 
of AI Planning (Sect. 3.1), Case-Based Reasoning (Sect. 3.2) 
and Distributed Learning (Sect. 3.3) in this context.

3.1 � AI Planning

AI Planning aims at solving a state transformation prob-
lem, where the goal consists of finding a sequence of steps 
to transform a discrete world model from an initial state 
to a desired goal state [14, 19]. This technique is already 
applied in the BPM area to increase automation and sup-
port [33]. In EASY, we investigate this technique to facilitate 
flexible Analysis and Control Processes dynamically in the 
ECC. The relevant analysis process mainly consists of ser-
vice orchestrations regarding computation resources in the 
ECC. Here, the goal state is achieving an optimal distribu-
tion of computation and data across the individual instances, 
e.g., for data aggregation. As the result, this is federated 
among the participated edge nodes and the cloud. For the 
control processes, the manufacturing environment is con-
sidered, where the goal state is a desired product with spe-
cific characteristics. The planning problem thereby consists 
of finding a sequence of executable manufacturing actions 
which lead to the desired products. Both, the generated 

analysis and the control processes, can be executed automati-
cally. A drawback of solving complex planning problems is 
the high computational complexity needed, especially when 
used on edge devices. To mitigate this, we will combine AI 
Planning with other AI techniques [18].

3.2 � Case‑Based Reasoning

Case-Based Reasoning (CBR) is an AI method for experi-
ence-based problem-solving [1, 7]. Problems and their cor-
responding solutions are stored as cases that form the basis 
of addressing new problems. Using similarity as a criterion, 
suitable cases are identified, and their solution is adapted. In 
the context of the EASY project, both analysis and produc-
tion processes are created using CBR. In the manufacturing 
domain, CBR can be used to perform analysis processes 
such as predictive maintenance or identifying data quality 
issues based on IoT time series data [31, 42, 44]. The advan-
tage of using CBR in this context is that in comparison to 
other AI methods only a few error cases are required. To 
optimize production processes, a case is represented as a 
workflow in the sub-field of Process-Oriented Case-Based 
Reasoning (POCBR) [36]. In the context of planning of 
processes, POCBR is used to reduce computational com-
plexity and increase flexibility by reusing already solved 
problems [28]. Thus, existing plans are retrieved and, if 
necessitated, adapted for the new requirements by AI Plan-
ning. In EASY, we use this for flexible planning and execu-
tion of the processes. These CBR applications for analysis 
and control are to take place on the edge as well as in the 
cloud dynamically.

3.3 � Distributed Learning

Distributed Learning is a Machine Learning  (ML) [37] 
approach performed across multiple computing 
resources [40]. Traditional ML and Deep Learning [8] sys-
tems rely on large amounts of centrally stored data, so that 
most (locally stored) data cannot be used due to compu-
tational complexity. The classical approach in ML or DL 
would be to send the (small) data sets of the single machines 
to a central server. There, a model is trained based on the 
data. In practice though, data often cannot be transported 
over a network due to privacy or bandwidth issues [26, 
48]. To address this in EASY, we use Federated Learning  
(FL) [34] as a distributed ML approach to keep the data 
local at each machine as an edge-node and learn for local 
analysis processes there. Instead of explicit data, the local 
model weights are shared in the ECC. Besides the advan-
tage that no real data is sent, all nodes share their knowl-
edge within the continuum. The respective edge devices 
can adapt the globally merged analysis model for their data 
without directly influencing the performance of the other 
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local models. In addition to traditional manufacturing data 
analysis using FL, robotic learning and optimization is also 
contained in EASY based on this technique. For this purpose, 
existing previous work [3] is built upon to first pre-train 
predictive robot foundation models on large data sets in the 
cloud and then achieve model-based parameter optimization 
on the edge devices [2]. Additional to the described commu-
nication reduction in these applications, energy consumption 
should be reduced by the distributed FL methodology.

4 � Use Cases and Demonstration

To showcase the approaches developed in the EASY pro-
ject, six demonstrators are built based on different use cases, 
briefly described in the following. The participating and 
associated industrial partners aim to ensure that the demon-
strators represent real-world use cases. In addition to quali-
tative aspects, quantitative parameters based on the metrics 
to be developed, such as energy or resource efficiency, are 
examined for each demonstrator.

Together with SmartFactoryKL and SmartFactoryOWL as 
associated partners, DFKI and Fraunhofer are creating two 
similar setups at the respective, cooperating locations. These 
are used to demonstrate the concept of shared production 
across multiple sites. This use case demonstrates the flexible 
and resilient control processes as well as analysis processes 
for quality control. To apply the POCBR approach, the CBR 
framework ProCAKE [5, 43] is used and extended for the 
application in the ECC.

Bosch realizes a demonstrator which is especially suited 
to invest analysis processes using FL. The demonstra-
tor consists of several standardized, interconnected edge 
devices whose behavior is monitored and controlled using 
a graphical interface. In this setup, the data of several mill-
ing machines connected to edge devices are processed and 
models are learned federated on this basis.

FL approaches in the ECC are also being explored by 
ArtiMinds in a demonstrator that focuses on robot learning 
and optimization. Among others, force-control and vision-
based handling are investigated. The implementation of the 
FL methods will also be integrated into the industrial robot 
data platform ArtiMinds LAR.2

In another demonstrator, Coboworx and Salzburg 
Research, present analysis processes by monitoring the 
condition of an industrial robot in a distributed palletizing 
application. The reliable communication within the ECC is 
visualized and measured regarding anomaly detection, to 
prevent possible economic downtimes.

Furthermore, the Environmental Campus explores analy-
sis processes with focus on the resource, data, and energy 
efficiency of distributed learning and applies these in dem-
onstrators for analyzing multi-modal sensor data.

5 � Summary and Outlook

In this paper, we present the idea of the EASY project, which 
aims at realizing a dynamic ECC for industrial manufactur-
ing. Our focus is on the application of AI methods to BPM 
processes, namely to the presented Analysis and Control 
Processes. In this context, we describe various research areas 
for future work, addressed within the EASY project. We will 
demonstrate the project results in an industrial context and 
evaluate them regarding their energy and resource efficiency.
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