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Abstract— High-level robot skills represent an increasingly
popular paradigm in robot programming. However, configuring
the skills’ parameters for a specific task remains a manual
and time-consuming endeavor. Existing approaches for learning
or optimizing these parameters often require numerous real-
world executions or do not work in dynamic environments. To
address these challenges, we propose Multimodal Trajectory
Transformer (MuTT), a novel encoder-decoder transformer
architecture designed to predict environment-aware executions
of robot skills by integrating vision, trajectory, and robot
skill parameters. Notably, we pioneer the fusion of vision
and trajectory, introducing a novel trajectory projection. Fur-
thermore, we illustrate MuTT’s efficacy as a predictor when
combined with a model-based robot skill optimizer. This ap-
proach facilitates the optimization of robot skill parameters
for the current environment, without the need for real-world
executions during optimization. Designed for compatibility with
any representation of robot skills, MuTT demonstrates its
versatility across three comprehensive experiments, showcasing
superior performance across two different skill representations.

I. INTRODUCTION

The use of robots in industry depends to a large extent
on the difficulty of programming the robot for the task to
be solved. One programming paradigm that has become
increasingly popular is programming with high-level robot
skills [1]–[4]. While there exist plentiful skill representations,
like Dynamic Movement Primitives (DMPs) [5]–[7] or clas-
sical force-controlled skills [8], all of them have in common
that they have a set of parameters (e.g. goal pose, robot
velocity) to configure them for the task at hand. Choosing
the correct parameters can be a time-consuming and complex
process, further complicated by the fact that the optimal
parameterization of a skill is highly sensitive to both the
robot and its environment. Prior work on learning [9] or
optimizing task parameters [10] is limited by the need for
hours of real-world robot executions or fails to generalize to
environment changes.

In light of these challenges, we propose MuTT, an inno-
vative encoder-decoder transformer for environment-aware
predictions of robot skill executions. To the best of our
knowledge, MuTT stands out as the first multimodal trans-
former that fuses trajectory and vision modalities, enabling
trajectory predictions based on visual reasoning. A trajectory
is a defined path in Joint or Cartesian space the robot follows
over a specified period of time. Every point in this path
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Fig. 1. MuTT is used in the SPI parameter optimizer [10] to refine the
initial search pattern (red dots, top). The optimization yields an improved
search pattern (red dots, bottom), reducing the required probes from six to
two to successfully locate the socket. This significantly decreases the cycle
time of the task. As an environment-aware model of robot skills, MuTT
enables the optimization of skill parameters for the current environment,
alleviating the need for real-world executions during optimization.

may encompass additional information, such as the forces
and torques experienced, the task success, or the expected
reward for Reinforcement Learning (RL) agents. Moreover,
MuTT can be used as a predictor of real-world executions
in robot skill optimizers [10], enabling the optimization of
robot skills for the current environment without requiring
real-world executions during optimization.

With this, our contribution is threefold:
1) MuTT: A transformer that can easily be finetuned to

predict environment-aware trajectories of robot skills.
This includes a novel projection for trajectories that
retains pose and force information at high temporal res-
olution, enabling precise prediction of high-frequency
features such as sharp peaks.

2) Integration of MuTT as a predictive model into an
optimizer for skill-based robot programs.

3) Evaluation of the prediction and optimization capabili-
ties of MuTT on two real-world industrial tasks and one
ManiSkill2 environment [11], using two different skill
frameworks [6], [8].

II. RELATED WORK

A. Multimodal Transformer

Transformers were applied to many multimodal applica-
tion domains in the past, typically combining the modalities
vision and text [12]–[15].
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Recent approaches are delving into the integration of text
and audio [16], as well as audio and vision [17], [18].
Nevertheless, these approaches consistently operate under the
assumption of modal synchronization. For instance, in [17],
video processing involves aligned audio tracks and video
frames. This exploitation of modality synchronization en-
ables the consolidation of synchronized segments from both
streams into a singular token. Gemini 1.5 [19] is a notable
exception as being one of the first to combine audio and
vision without requiring modal synchronization. However,
as the architecture of Gemini 1.5 is not publicly available,
there is no information about its implementation.

In the robotics domain, [20], [21] have advanced the train-
ing of a multimodal transformer architecture for closed-loop
robot control. Similarly, [22] integrate language instructions
and images, although their model focuses on predicting text-
based instructions rather than directly predicting raw actions.

While numerous approaches exist that combine vision,
audio, or text [14]–[25], there currently lacks a multimodal
transformer that effectively merges trajectory and vision
modalities. Despite the potential similarity between the audio
and trajectory modalities due to both being continuous-
valued time-series, trajectories require a more precise res-
olution which hinders the use of discretization, often done
for the projection of audio data [16]. Additionally, the
trajectory length is crucial, which for audio is often not
considered [24], [16].

B. Forward Dynamics Models

Previous approaches [26]–[28] develop a forward dynam-
ics model to predict the state of the robot or environment
given a robot action. The learned model is then utilized to
determine the action that yields the optimal state, using either
sample-based methods or gradient-based optimization. For
instance, [28] propose a forward model that, given a text-
based description of a task, predicts a video depicting the
robot performing the task. From the video, they derive the
robot’s action sequence. However, most forward dynamics
models are tailored to specific tasks, such as predicting the
cable tip in [26]. In contrast, MuTT receives and predicts
trajectories, allowing for its application across a wide range
of tasks and robot skill representations. Furthermore, MuTT
is the first forward model to incorporate an environment
image, enabling it to predict the robot state conditioned on
the robot’s current environment.

C. Robot Skill Optimization

Alt et al. [10] propose a model-based optimizer for skill-
based robot programs that learns a differentiable model of
a sequence of robot skills. This “shadow program” predicts
the expected robot execution given the skills’ parameters,
enabling the optimization of robot skill parameters via
gradient descent without additional executions on the real
robot. Alternative approaches optimize skill parameters with
Reinforcement Learning [29], Bayesian Optimization [1],
or Evolutionary Algorithms [2] by repeatedly executing the

program with varying parameterizations on a real robot or
in a simulated environment for evaluation.

Most of the proposals for robot skill optimization [1],
[2] require executing candidate parameterizations on the
real robot to assess them for the current environment. This
significantly slows down the optimization and necessitates a
real robot during optimization. Additionally, it poses the risk
of potentially damaging the robot or its surroundings, as the
chosen program parameterizations are solely determined by
the optimizer, potentially leading to unforeseen consequences
during execution. A simulated environment can be beneficial,
but introduces the Sim2Real Gap [30], which complicates
the transfer of learned skills to the real robot. While [10]
avoids this by learning a surrogate model that predicts the
robot execution, this predictor has no sense of the current
environment the robot operates in, restricting its application
to static environments.

Our contribution incorporates an environmental signal and
enables the prediction of accurate robot trajectories for the
current environment. With this, it is not tailored to one
skill representation or one specific optimization algorithm,
but can be integrated as an environment-aware predictor in
gradient-based [10], [31], gradient-free [32]–[34] and model-
based [35], [36] optimization strategies. This eliminates the
need to perform real robot executions during optimization of
the robot skill.

III. MULTIMODAL TRAJECTORY TRANSFORMER

MuTT is an encoder-decoder transformer [37] that predicts
the execution of robot skills for the current environment.
The encoder fuses the different modalities into one hidden
representation, based on which the decoder predicts the
environment-aware trajectory autoregressively. The model
architecture is depicted in Figure 2.

A. Encoder

The encoder of MuTT follows the single-stream ap-
proach [38] and uses a minimal embedding pipeline to
project the trajectories, environment images and skill param-
eters into a token sequence. As we are the first to consider the
trajectory modality, we propose a novel trajectory embedding
further detailed in III-C. An image of the environment is
split into 16x16 patches and linearly projected into tokens
as in [39]. We interpolate over the position encoding for the
image tokens to enable the processing of differently sized
images [39]. The robot skill parameters are embedded by
a single linear layer. All embedded tokens are coded with
modality-specific positional encoding and their respective
token type before they are passed through the encoder
transformer to obtain a fused hidden representation.

B. Decoder

The MuTT decoder predicts the trajectory segment-wise
in an autoregressive manner, while feeding the already pre-
dicted trajectory segments back into the decoder alongside
the encoder’s hidden representation, as in [16]. We decide on
a segment-wise prediction and not a prediction of individual
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Fig. 2. Multimodal Trajectory Transformer architecture: modality specific embedding of the simulated trajectory (blue), skill parameters (green) and
environment image (red) into tokens, which are concatenated to one token sequence. All tokens are coded with modality specific positional and token-type
encoding and passed through an encoder transformer. The decoder predicts the real-world trajectory (purple) in an autoregressive manner.

points to utilize the hidden state effectively and reduce the
inference duration and number of autoregressive iterations.
A segment size of 20 points proved to be the best, as it did
not reduce the prediction accuracy, but significantly reduced
the memory requirements and inference time of MuTT.
The decoder should predict the trajectory that matches the
execution of the robot skill in a particular environment. Both
the encoder and decoder have a hidden size of 768, the
encoder consists of 12 attention layers, while the decoder
consists of 6 attention layers. Every attention layer uses 12
attention heads.

We chose an encoder-decoder architecture to enable the
prediction of variable-length trajectories and to support a
variable number of image patches. An encoder-only or
decoder-only transformer would require padding input or
output to a fixed length, artificially enlarging the data that
must be processed. In Experiment IV-A.1, we compare the
encoder-decoder transformer with an encoder-only trans-
former. The encoder-only transformer predicted trajectories
whose length deviated significantly more from the execution
than the predicted trajectories of the encoder-decoder trans-
former. Moreover, a fixed input or prediction size limits the
ability to transfer a trained MuTT instance to a new task that
would require processing longer trajectories.

C. Trajectory Projection

Trajectories are continuous-valued time-series with a fixed
temporal sampling interval. In comparison to many other
modalities, trajectories need a high prediction accuracy and
also require predicting the exact length of the trajectory.
We normalize trajectories by the dataset mean and standard
deviation. Since the trajectories in a batch can be of different
length, we pad them to the length of the longest in the
batch by replicating the last point. Additionally, the batch
is padded to a multiple of 20 points. Padding a trajectory
involves annotating every point with a binary flag that
indicates whether the point serves as padding or not. We

split the trajectories along the time dimension into equal
sized segments of 20 points. The trajectory embedding
follows the minimal embedding pattern used in [39] and
projects the segments with a single linear layer in a token
sequence. In contrast to related approaches working with
actions [20], [40], the trajectories are not discretized before
projection, which would reduce their resolution. We also do
not apply any smoothing or additional pre- or postprocessing
to the trajectories. Furthermore, we set the attention mask
value for a token to zero if the entire segment consists of
padding points only and otherwise to one. The position of
every token is encoded with absolute position encoding [41].
Relative positional encoding or interpolation would violate
the invariant that there is a fixed time interval between two
successive data points in a trajectory.

D. Pre-training

MuTT must be trained to predict the real execution of
a robot skill. Since collecting a real-world dataset of robot
executions is costly, we aim to minimize the data required
to train the model effectively. Consequently, we compared
initializing the transformer encoder with weights from re-
lated models [15], [16], [24], [39]. Nearly all initialization
variants improved the performance of the finetuned MuTT
significantly, except for [24]. The initialization with Vision
Transformer (ViT) [39] resulted in the best performance. We
use the weights of SpeechT5 [16] for the decoder transformer
due the similarity between the audio and trajectory modality,
which stems from their shared characteristic as continuous-
valued time series.

IV. EXPERIMENTS

We demonstrate the capability of MuTT to accurately
predict the real-world execution of robot skills by eval-
uating it in three different manipulation scenarios, using
two different robot skill representations. This showcases
MuTT’s design to seamlessly work with various robot skill
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Fig. 3. Evaluation scenarios: Real-world grasping of deformable cables (Experiment IV-A.1, left), real-world force-controlled plug insertion under
uncertainty (Experiment IV-A.2, middle), and simulated grasping in the ManiSkill2 benchmark (Experiment IV-B.1, right).

Fig. 4. Comparison of training MuTT on the dataset of Experiment IV-A.1
with different initial weights from related applications [15], [16], [24], [39].
Initialization with ViT [39] resulted in the best evaluation performance.

representations, without necessitating any modifications to
the model architecture or training algorithm. An overview
of the experiments is shown in Figure 3. In all experiments,
we embed MuTT as an environment-aware predictor of real
robot-skill executions in existing frameworks [10], [11] to
optimize the robot skills for the current environment.

A. Model-Based Optimization of Industrial Robot Skills

We use MuTT to optimize industrial robot skills [8]
for grasping deformable cables and force-controlled plug
insertion. In both experiments, MuTT receives a simulated
trajectory of the skill, the skill’s parameters, and an unpro-
cessed RGB environment image from a RealSense D435.
Based on these inputs, the model must predict the real-
world trajectory resulting from the execution of the skill. The
trained MuTT instances are then used in the robot program
parameter optimization framework SPI [10] to optimize the
program for the current environment.

1) Grasping of Deformable Cables: This experiment is
designed to clearly demonstrate that MuTT can be used
as forward model in existing optimization frameworks, in

MuTT Prediction MuTT Force Optimization

Fig. 5. Experiment IV-A.2: End-effector pose (along Z axis, left) and force
(along Z axis, middle) prediction of MuTT for a probe skill. MuTT predicts
forces accurately, enabling the optimization with SPI [10] of the robot skill
to adhere to the user-defined force limit of 6 N, while the unoptimized skill
greatly exceeds that limit (right).

this case for the optimization of robot skill parameters with
SPI [10]. In the experiment, the robot tries to grasp an
industrial cable from a table with a grasp skill parameterized
by a grasp pose. The cable’s position varies by up to 5
centimeters in each direction. MuTT is trained on 5,000
randomly selected grasp executions. We compare different
initialization strategies for MuTT [15], [16], [24], [39], with
ViT [39] yielding the best evaluation performance, as seen
in Figure 4. MuTT predicts the execution of the grasp
skill, including whether the cable was grasped successfully.
Subsequently, we utilized MuTT to predict the real robot
executions within the parameter optimizer SPI [10], opti-
mizing the grasp pose for successful cable grasping. While
the robot grasped the cable in 2 of 100 evaluation runs with
initial parameterizations sampled from the region of feasible
grasp poses, parameter optimization with MuTT and SPI led
to grasping the cable in 67 of the same 100 evaluation runs.

This demonstrates MuTT’s capability to integrate the envi-
ronment image and program parameters to accurately predict
the likelihood of grasping in the current environment. With



TABLE I
EXPERIMENT IV-A.2: RESULTS

Unoptimized Optimized

Avg number of probes 14 3
Avg search duration (s) 25.3 7.5
Success probability 0.55 0.96
Avg exceeded forces by (N) 3.5 0.7

this, the grasp pose can be optimized until MuTT predicts a
successful grasp of the cable.

2) Force-Controlled Plug Insertion: The second experi-
ment is representative of many current applications of robots
in industry and shows that MuTT is able to predict complex
skill executions. In this experiment, the predictions not only
include the end-effector pose, but also the forces and torques
that occur at the end-effector during execution. Specifically,
we study the insertion of an industrial connector into the
matching socket with a force-controlled probe-search skill.
In real-world industrial applications, the exact positioning of
parts such as the socket is often subject to process noise.
We simulate random deviations of the positioning of the
socket by up to 1 cm with a linear axis. The robot searches
for the socket along the linear axis. In this experiment,
MuTT predicts the end-effector motion during search, which
deviates from the planned motion due to environment inter-
action, This includes the unknown position of the socket,
on which the robot’s search motion depends. Additionally,
MuTT predicts the end-effector forces and torques during
search, and a success token indicating whether the robot
successfully plugged the connector into the socket. MuTT
must adjust its prediction based on the socket’s position
depicted in the environment image and the search pattern
given by the skill parameters and simulated trajectory.

We train MuTT on 5,000 randomly parameterized robot
skill executions. The trained MuTT instance accurately pre-
dicts the search motion of the end-effector with an average
deviation to the real execution by 0.3 mm and an average
force deviation of 0.5 N. The success of the search was
predicted correctly with an F1 score of 0.99. Figure 5
depicts an exemplary prediction of MuTT alongside the real
execution of that same robot skill.

We show that the accurate prediction of MuTT can be
used in SPI to optimize the search skill, including the search
pattern for a fast and successful search, as well as the contact
forces during the search. In force-controlled skills, reaction
delays consistently lead to the robot exceeding pre-set force
limits. Consequently, optimizing the search skill to adhere to
a user-defined force-threshold safeguards hardware (such as
the grasped plug) from damage by exceeding the force limit.

Table I compares the execution of the initial robot skill and
the optimized robot skill on the real robot. MuTT predicts
the real execution accurately for the current deviation of
the socket. This enabled SPI to optimize the robot skill
parameters resulting in a 70 % faster search, doubling the
success probability while adhering to the force limit 78 %
more accurately. The maximal forces experienced during
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Fig. 6. Architecture of Experiment IV-B.1. The BC actor predicts ProDMP
parameters p̂ that define a trajectory to pick up the red cube shown in the
environment images. MuTT predicts the expected reward r̂ the agent would
receive for every action in this trajectory. Φ computes the mean squared
distance to the maximal reward the actor can receive for an action. Via
gradient descent, the ProDMP parameters p̂ are optimized to minimize Φ
and consequently maximize the predicted reward r̂, resulting in improved
ProDMP parameters p̂.

search with unoptimized and optimized parameters can be
seen in Figure 5. While using the unoptimized parameters
resulted in exceeding the user-defined force threshold by
about 4 N, the optimized programs kept to the force limit.

B. Model-Based Optimization of Probabilistic Dynamic
Movement Primitive (ProDMP) Skills

In a second series of experiments, we apply MuTT to
ProDMPs, demonstrating that its architecture is not limited
to one specific robot skill representation. ProDMPs provide
a representation capable of generating smooth trajectories
from any initial state while capturing higher-order motion
statistics. This experiment assesses MuTT’s prediction capa-
bilities on the PickCube-v0 environment of the ManiSkill2
Benchmark [11]. We focus solely on picking up the cube
from the surface without evaluating whether the cube was
lifted to the correct position. Here, MuTT’s predictions are
used to optimize the trajectory suggested by an episodic RL
agent, resulting in an increase of task success compared to
the raw agent. For this, we learn a robot skill with an episodic
Behaviour Cloning (BC) actor that predicts parameters p̂ for
7 ProDMPs [6], 6 of which define the end-effector pose (po-



Initial Trajectory Optimized Trajectory

Fig. 7. Robot skill optimization in Experiment IV-B.1. Evolution of the tra-
jectory generated from the ProDMP parameters throughout the optimization
process. The robot would not have grasped the cube with the initial robot
skill parameters (red). Over the course of the optimization, the trajectory is
gradually aligned with the cube’s position. Ultimately, with the optimized
ProDMP parameters, the robot successfully grasps the cube (green).

sition and rotation) and one the gripper configuration. MuTT
receives the ProDMP parameters, the simulated trajectory
generated by the ProDMPs, and concatenated images of two
cameras as input. In contrast to the first two experiments,
the real-world trajectory predicted by MuTT also contains the
reward r̂ the agent would receive for every action in the given
ProDMP trajectory. This underscores MuTT’s versatility, as
the predicted trajectory is not limited to the robots motion,
but can contain any sequence of data associated with the
execution of the robot skill. Via gradient descent, the param-
eters p̂ are optimized to maximize the reward r̂ predicted by
MuTT. The architecture is illustrated in Figure 6.

1) ManiSkill2 Benchmark: We train a BC actor [42] on
a dataset Ddemo consisting of 1,000 optimal demonstra-
tions and use the trained actor to generate an additional
dataset Dim consisting of 30,000 imperfect executions. Sub-
sequently, MuTT is trained on Dim to predict the expected
reward for every action. Finally, we employ the trained
MuTT instance to optimize the ProDMPs predicted by the
BC actor. To achieve this, we compute a loss Φ(r̂) based on
the reward r̂

Φ(r̂) :=
1

|r̂|

|r̂|∑
i=1

(rmax − r̂i)
2

and update the ProDMP parameters p̂ via gradient descent.
rmax is the maximal reward the actor can receive for one
action, in this experiment set to 1. This aims to maximize
the reward r̂ predicted by MuTT.

Table II compares the BC actor with and without op-
timization by MuTT to the offline episodic RL algorithm
Advantage Weighted Regression (AWR) [43] trained on
Dim and to the state-action based offline RL algorithm
Implicit Q-Learning (IQL) [44], trained on 66,000 state-
action transitions generated from the Dim episodic dataset.
All algorithms are evaluated on the same 100 environments
they have not seen during training.

Optimizing the ProDMPs predicted by the BC actor with
MuTT increases the number of successful task executions
by 6 %. Figure 7 displays how the optimization improves
the end-effector trajectory leading to successful grasping of

TABLE II
EXPERIMENT IV-B.1: RESULTS

Time steps Dataset size Success prob.

BC [42] 60k 1k 0.33
BC + MuTT (Ours) 7.3M 30k 0.39
AWR [43] 15M 30k 0.02
IQL [44] 9.3M 66k 0.35

the cube, while the robot does not grasp the cube with the
trajectory predicted by the BC actor. MuTT notably excels
the AWR algorithm that struggles to learn the task based
on the same dataset Dim MuTT was trained on, likely due
to only 30 % of the samples in this dataset successfully
solving the task. MuTT also dominates IQL, which was
trained on a dataset more than twice as large. While it is
difficult to compare episodic and state-action based algo-
rithms, it demonstrates that MuTT outperforms state-action
based algorithms that were trained for a comparable number
of steps on a dataset of comparable size. Additionally, state-
action based algorithms can adapt their prediction for every
new state online, while MuTT predicts the entire trajectory
given the initial state, without any online adaptation during
execution.

V. CONCLUSION AND OUTLOOK

We introduce MuTT, a Multimodal Trajectory Trans-
former that accurately predicts robot skill executions aligned
with the robot’s current environment by integrating vi-
sion, trajectory, and robot skill parameters. MuTT is
representation-agnostic with respect to the robot skill and
can be applied to near-arbitrary skill representations. To
that end, we developed a novel trajectory projection that
retains important properties such as the trajectories’ temporal
resolution and length.

MuTT’s architecture allows for efficient training with
relatively small datasets of random skill executions, making
it a promising foundation model with quick adaptation to
specific robot skills. Furthermore, MuTT’s compatibility with
any robot skill optimizer enables the optimization of robot
program parameters tailored to the current environment.

While MuTT as predictor for model-based robot skill
optimization offers significant advantages over traditional
optimization methods, such as not requiring real-world exe-
cutions during optimization and precise trajectory prediction
in dynamic environments, some challenges remain. The
prediction accuracy of MuTT on out-of-distribution sam-
ples should be further analyzed. First tests showed that
MuTT’s capability to generalize well to such samples is
limited, indicating room for improvement through future
research. Additionally, the speed of parameter optimization
relies heavily on the inference speed of MuTT. While we
engineered the model for fast and efficient inference, the
optimization of robot skills currently takes about 20 to
40 seconds. Optimizing the model architecture to decrease
inference duration and consequently enhance optimization
speed is open for future research.
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