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Abstract— Semantic digital twins (SemDTs) enable robots
to reason about world semantics for robust real-world task
planning and execution. Most existing frameworks require
manual modeling of geometry and ontologies. We present an
end-to-end pipeline that bootstraps SemDTs from monocular
video using vision-language models. Our system reconstructs 3D
geometry, segments objects, classifies them against an extensible
taxonomy, and persists the result to a queryable database.
The VLM dynamically proposes novel semantic classes when
existing categories are insufficient. We demonstrate promising
first results on a real-world kitchen environment.

I. INTRODUCTION

Digital twins, i.e. explicit models of the environment,
its dynamics and the agents within it, enable robots to
solve long-horizon manipulation tasks through deliberative
planning. Semantic digital twins (SemDTs) extend geometry
and kinodynamics with explicit object semantics such as
taxonomies, affordances and social functions [1], allowing
robots to reason about complex world dynamics and enables
human inspection and modification of generated plans.

SemDTs have traditionally required significant modeling,
such as CAD models and manual semantic annotation. We
envision a world in which creating semantically rich digital
twins is as easy as pointing a phone camera at the scene.
To that end, we propose a system that constructs complete
semantic digital twins from short monocular videos in a zero-
shot, end-to-end manner, reconstructing geometry, segment-
ing objects and inferring semantics without human labeling.

A. Related Work

3D Reconstruction. Recent advances in Structure from
Motion (SfM) and multi-view stereo enable dense 3D recon-
struction from monocular video [2]. Neural Radiance Fields
(NeRFs) [3] and 3D Gaussian Splatting (3DGS) [4] achieve
photorealistic novel view synthesis but produce implicit
representations unsuitable for object-level reasoning. Surface
extraction methods [5], [6] can recover explicit meshes from
neural fields.

Semantic Scene Understanding. Panoptic segmentation
[7] unifies instance and semantic segmentation. Recent works
lift 2D segmentation to 3D via multi-view fusion [8], [9]
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or feature distillation into radiance fields [10], [11]. Vision-
language models (VLMs) [12], [13], [14] enable open-
vocabulary 3D understanding [15], including zero-shot affor-
dance detection [16], [17] and articulation estimation [18].

Semantic Digital Twins. Prior SemDT frameworks for
robotics [19], [20] require predefined CAD models or manual
ontology construction. Our work proposes bootstrapping
complete semantic representations end-to-end from video
using VLMs, without requiring manual modeling.

B. Contribution

We present an end-to-end pipeline for creating semantic
digital twins from monocular video (Fig. 1). Our contribu-
tions are (1) a complete pipeline from raw video to SemDT,
integrating 3D reconstruction, panoptic segmentation, se-
mantic classification and persistence; (2) open-vocabulary
semantic understanding via VLMs that dynamically extends
the object taxonomy when novel classes are encountered; and
(3) zero-shot operation requiring no task-specific training or
manual annotation. Our code is available as open-source.1

II. METHODS

Our pipeline transforms 2D video into a queryable seman-
tic digital twin through four stages (Fig. 1).

3D Reconstruction and Segmentation. We reconstruct
scene geometry using semantically-augmented Gaussian
Splatting. We use COLMAP [2] to infer camera poses and
initialize sparse 3D Gaussians. Each Gaussian is augmented
with semantic feature vectors combining class features and
instance embeddings. These are supervised with SAM3 [21]
outputs using binary cross-entropy loss for class features and
contrastive loss for instance embeddings, such that embed-
ding distances reflect instance membership probabilities. We
cluster the optimized per-point features into object instances
with class probabilities using hierarchical DBSCAN.

In parallel, we reconstruct object meshes via a classi-
cal SfM pipeline [22] using COLMAP to obtain camera
positions and a sparse point cloud, followed by multi-
view stereo reconstruction based on semi-global matching to
obtain dense depth images. 3D Delaunay tetrahedralization
and Graph Cut Max-Flow are applied to obtain meshes.
Semantic labels are transferred to the meshes by rendering
the Gaussian semantics from training viewpoints and re-
texturing the mesh surface.

Open-Vocabulary Semantic Classification. Each seg-
mented mesh is classified using a VLM (Qwen3 VL 30B
A3B Instruct). We render the scene from three viewpoints

1https://github.com/Sanic/cognitive_robot_
abstract_machine/tree/semdt-creation-from-video

https://github.com/Sanic/cognitive_robot_abstract_machine/tree/semdt-creation-from-video
https://github.com/Sanic/cognitive_robot_abstract_machine/tree/semdt-creation-from-video


2D Video

Textured mesh

Object instances,
preliminary labels

Class taxonomy

System prompt
"You are a semantic perception
system for scene understanding..."

User prompt

Orig. texture Colored Prelim. labels

Container
| Cup
| Mug
| CookingCont.
| | Pan
...

sink
things
drawer_1

...

  {
    "body_id": "8ce4...",
    "color": "indigo",
    "class": "Drawer",
    "superclass": "HasBody",
    "is_new_class": false,
    "confidence": 1
  }, ...

semantic_annotations.pysemantic_annotations.py

semantic_annotations.py
update

Dependency
resolutionIn

st
an

ti
at

io
n

To
po

lo
gi

ca
l

so
rt

Heuristic
Resolution

Devstral 2
2512

1

2Object instances
(semantic annotations)Scene graph

P
er

si
st

en
ce

Semantic Digital Twin

Diff.
Rendering

SAM3

3DGS

Class
labels

Instance
labels

O
pt

im
iz

at
io

n

3DGS +
Semantic
Features 

C
am

.
po

se
s

C
O

L
M

A
P

Structure from
Motion

@dataclass
class Stovetop(CookingSurface):
    pass

obj_23 = Stovetop(
             body=body_23,
             ...)

Fig. 1. Overview: Zero-shot, end-to-end construction of semantic digital twins from monocular video.

(back, diagonal front-left, diagonal front-right), highlighting
target objects in distinct colors while preserving surrounding
textures for context. Objects are processed in batches; for
each batch, the VLM receives six images (three original,
three highlighted), a hierarchical object taxonomy (class hier-
archy from the SemDT codebase), and prior semantic labels
from the segmentation stage. The VLM outputs structured
JSON with class assignments and confidence scores. If no
suitable class exists in the taxonomy, the VLM proposes
new subclasses under the appropriate parents, enabling open-
vocabulary understanding without a fixed label set.

Semantic Annotation Instantiation. Classification results
are instantiated as semantic annotations in a three-phase pro-
cess. In class inference, novel classes proposed by the VLM
are dynamically generated from Jinja2 templates inheriting
from appropriate superclasses and imported for instantiation.
In dependency resolution, we iteratively resolve typed con-
structor fields (e.g., a Cabinet requires a Container
reference) using domain heuristics (e.g. type hints) with
optional LLM fallback (Devstral 2 2512) for ambiguous
cases. In instantiation, annotations are topologically sorted
by their dependencies and instantiated in order, ensuring all
references are valid. The result is a fully instantiated SemDT
that can be used for simulation, task planning and robot
control by downstream applications.

Persistence. The world model (bodies, kinematic struc-
ture, semantic annotations) is persisted to PostgreSQL via an
auto-generated object-relational mapping. A class diagram
analyzer generates Data Access Objects (DAOs) for all
annotation classes, including dynamically created ones; the
database schema is updated at runtime when new classes are
introduced.

III. PRELIMINARY RESULTS

We evaluated our pipeline on a real-world kitchen environ-
ment (see Fig. 1). The reconstruction and segmentation stage
produced 20 mesh bodies from monocular video. The VLM

classified all 20 objects and assigned them to 10 distinct
semantic classes. Four novel classes not present in the base
taxonomy were proposed by the VLM (CookingSurface,
Stovetop, CuttingBoard, Tap) and dynamically gen-
erated at runtime.

During dependency resolution, the system inferred 12
additional Container annotations to satisfy constructor
field constraints for Drawer and Cabinet instances. All
dependencies were resolved in a single iteration using heuris-
tics, without falling back on the LLM. The final SemDT
contains 32 semantic annotations across 11 classes.

This preliminary experiment demonstrates the feasibility
of SemDT construction from raw video of a real-world
kitchen to a queryable, persistable semantic digital twin
with automatically extended taxonomy. Limitations include
the lack of articulation (e.g. doors, tap handle, ...) and the
reliance on accurate upstream segmentation (drawer handles
were not segmented). Future work will evaluate on additional
environments and integrate physics and affordances.

IV. CONCLUSION

We presented an end-to-end pipeline for bootstrapping
semantic digital twins from monocular video that integrates
open-vocabulary scene understanding, integration with exist-
ing taxonomies, and compatibility with the CRAM cognitive
architecture [23] for virtual reality (VR) simulation and robot
planning.

Limitations. Our evaluation is limited to a single real-
world kitchen environment. Furthermore, the appropriate
level of semantic abstraction is application-dependent and
requires further experimentation.

Outlook. Future work will include benchmarking on large-
scale scene understanding datasets and qualitative evaluation
on diverse real-world environments. We will assess the utility
of the generated SemDTs for robotic mobile manipulation,
where the required semantic granularity can be empirically
determined by task performance.
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