
Robot Program Parameter Inference via Differentiable Shadow
Program Inversion

Benjamin Alt1,2, Darko Katic1, Rainer Jäkel1, Asil Kaan Bozcuoglu2 and Michael Beetz2

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/ICRA48506.2021.9561206

Abstract— Challenging manipulation tasks can be solved
effectively by combining individual robot skills, which must
be parameterized for the concrete physical environment and
task at hand. This is time-consuming and difficult for human
programmers, particularly for force-controlled skills. To this
end, we present Shadow Program Inversion (SPI), a novel ap-
proach to infer optimal skill parameters directly from data. SPI
leverages unsupervised learning to train an auxiliary differen-
tiable program representation (“shadow program”) and realizes
parameter inference via gradient-based model inversion. Our
method enables the use of efficient first-order optimizers to
infer optimal parameters for originally non-differentiable skills,
including many skill variants currently used in production.
SPI zero-shot generalizes across task objectives, meaning that
shadow programs do not need to be retrained to infer pa-
rameters for different task variants. We evaluate our methods
on three different robots and skill frameworks in industrial
and household scenarios. Code and examples are available at
https://innolab.artiminds.com/icra2021.

I. INTRODUCTION

Combining individual robot skills to solve complex tasks
has established itself as one of the primary programming
paradigms in robotics. A large variety of skill variants such as
Dynamic Movement Primitives (DMPs) [1], Task and Motion
Planning (TAMP) operators [2] or generalized manipulation
strategies [3] have been proposed, all of which allow the
behavior of skills to be adapted to the task at hand by a
set of skill parameters such as velocities, scaling factors or
via-points. Finding appropriate values for these parameters is
difficult and typically requires manual tweaking. Consider a
force-controlled spiral search skill, where the robot executes
a spiral motion until a drop in forces at the tool center
point (TCP) indicate that a hole has been found. The op-
timal parameters, i.e. spiral orientation and extents, velocity,
acceleration and pushing force, to maximize the likelihood
of finding a hole without sacrificing too much time, depend
on the probability distribution of the hole position and the
physical properties of the surfaces. For a human programmer,
tuning these parameters involves much trial and error.
Differentiable programming (∂P) provides an elegant so-
lution: If a program is fully differentiable, it allows for
the gradient-based optimization of program parameters with
respect to nearly arbitrary objective functions over the pro-
gram’s outputs [4], [5]. However, most skill libraries used in
practice are not differentiable. Particularly force-controlled
skills such as spiral search or moment-free insertion are often

1ArtiMinds Robotics, Karlsruhe, Germany
benjamin.alt@artiminds.com

2Institute for Artificial Intelligence (IAI), University of Bremen, Germany

Fig. 1: Parameter inference via Shadow Program Inversion.
By inverting learned differentiable shadow models (right) of
a sequence of robot skills (left), optimal program parameters
can be inferred directly from data.

implemented using highly performant but non-differentiable
force controllers provided by robot manufacturers.
In this paper, we present Shadow Program Inversion (SPI),

a novel ∂P-based method of inferring optimal parameters
for robot programs of non-differentiable skills. We propose
to learn a differentiable surrogate (called shadow model)
of each skill, which is trained via unsupervised learning to
predict the expected trajectory (TCP poses and wrenches)
when executing the skill for a given set of parameters. Just
like skills can be chained to solve complex tasks, their
shadow models can be chained to form a differentiable
shadow program. We then apply a gradient-based neural
network inversion technique to the shadow program to jointly
infer the skill parameters which maximize a set of task
objectives. By maintaining a one-to-one relationship between
the original robot skills and their differentiable shadows, the
optimized program parameters can be transferred back to the
original skills, which are used for execution on the robot.
By conducting gradient-based parameter inference over dif-
ferentiable surrogates rather than the actual skills, our
method can be applied optimize parameters for widely used
skill representations such as DMPs, which do not have to
be differentiable. Moreover, it generalizes in a zero-shot
manner across task objectives, avoiding retraining when task
objectives change. We demonstrate the broad applicability
of our approach on three use cases from industrial and
household robotics, involving diverse skill representations
ranging from high-level generalized manipulation strategies
to low-level DMPs and the URScript robot API [6]. To
our knowledge, SPI is the first application of gradient-based

ar
X

iv
:2

10
3.

14
45

2v
2

 [
cs

.R
O

]
 1

4
Ju

l 2
02

2

https://innolab.artiminds.com/icra2021

model inversion to robot skill parameterization.
Our main contributions can be summarized as follows:

1) Shadow models, differentiable surrogate representa-
tions of possibly non-differentiable skills.

2) Shadow programs, end-to-end differentiable represen-
tations of complete skill-based robot programs.

3) Shadow Program Inversion, an algorithm to effi-
ciently infer optimal skill parameters via gradient-
based model inversion.

4) Evaluation of Shadow Program Inversion on three
different robots and real-world use cases.

II. RELATED WORK

1) Robot skill parameter inference: Several approaches
for the automatic optimization of robot skill parameters
have been proposed, which rely on gradient-free optimiza-
tion techniques such as evolutionary algorithms [7], [8],
[9] or Bayesian optimization [10], [11], [12] due to the
non-differentiability of most skill libraries and frameworks.
Gradient-free approaches require frequent execution of the
skills during optimization, which is a time-consuming pro-
cess if done on real robot systems, has to be repeated
whenever the task objectives change and often require good
initial parameterizations. We propose to use a gradient-based
optimizer on a differentiable surrogate model of the skills,
which avoids these issues.

2) Unsupervised representation learning: Recent robot
learning approaches such as Visual Foresight [13], Adver-
sarial Skill Networks [14], Time Reversal [15] or “Learning
from Play” [16] propose self-supervised or unsupervised
learning of a predictive model, i.e. a model of skill inputs
to a latent trajectory representation, from which a policy to
solve the task is then derived. We take a similar approach to
parameterize skill-based robot programs by learning a differ-
entiable skill model and exploit its differentiability to infer
optimal program parameters. Like most approaches relying
on self-supervised representation learning, ours generalizes
across task variants without requiring additional training.

3) Differentiable programming: Differentiable program-
ming (∂P) proposes to express programs as differentiable
computational graphs, which permit the optimization of
program parameters via reverse-mode automatic differenti-
ation and gradient-based optimization [5], [4]. From a ∂P
perspective, neural networks can be considered a type of
differentiable program, and can be combined to computa-
tional graphs-of-networks [17], [18], [19] as well as hybrid
architectures combining neural networks with differentiable
hand-written algorithms or data structures [20], [21], [22],
[23], [24]. In the domain of robotics, ∂P has been realized in
the form of hybrid skill representations such as Conditional
Neural Movement Primitives [25], [26], Deep Movement
Primitives [27] or Differentiable Algorithm Networks [28],
which combine differentiable algorithmic priors with neural
networks and can be combined to complex robot programs in
a modular fashion. Like most prior work on ∂P in robotics,
we provide modular interfaces to combine differentiable

functional blocks to complex programs, and combine hand-
written computational graphs with neural networks to sim-
plify the learning problems. In contrast to prior work, how-
ever, we rely exclusively on unsupervised learning, which
greatly simplifies data collection and model training. In work
similar to ours, Zhou et al. [29] propose to generate DMP
parameters directly with a Mixture Density Network. We
instead propose to learn a differentiable model of the DMP
and to infer the optimal skill parameters via model inversion
after training. The advantage is that no retraining is required
when the task objective changes. Moreover, our approach
can be applied to near-arbitrary skill representations beyond
DMPs and allows the optimization of parameters for complex
programs composed of multiple skills.

III. DEFINITIONS & PROBLEM STATEMENT

A. Definition: Skill-based Robot Program

We define a skill-based robot program as a directed acyclic
graph (DAG) of skills, where each skill is defined as a
function f : X × S → S × Y with the space of the skill’s
exposed input parameters X , S the state space comprising the
current poses of coordinate frames relevant to the task and
Y the trajectory space comprising TCP poses and wrenches.
This definition allows to treat a skill as a black box which
maps a vector of inputs x ∈ X and prior state sin ∈ S to
posterior state sout ∈ S and trajectory Y ∈ Y . It covers
DMPs [1], generalized manipulation strategies [3] or any
skill variant which takes some inputs x and moves the robot.
This definition allows to design a universal differentiable
shadow model architecture capable of representing them.

B. Problem Statement: Robot Program Parameter Inference

Sequentially chained skills form complex robot programs
by propagating the posterior state si,out of the ith skill in the
sequence to the prior state si+1,in of the subsequent skill.
We postulate the Markov property, i.e. all relevant context
information is captured in the start state sin. Such a skill-
based robot program realizes the function P : S×Xn → S×
Y . We seek to optimize a task-dependent objective function
Φ : Y → R, which assigns a real-valued score to a trajectory.
For a program containing a spiral search skill, Φ might assign
high scores to trajectories which exhibit the characteristic
drop in forces indicating that the hole has been found. For a
given program P and initial state sin, we seek to solve the
inverse problem x∗ = argmaxx∈Xn Φ(P (sin,x)), i.e. to
find skill parameters which maximize Φ. In the spiral search
example, x∗ contains the velocities, accelerations, spiral
extents and force setpoints which maximize the likelihood
of the hole being found. Due to the high dimensionality of
the combined input space Xn of complex programs, learning
to directly compute x∗ would require prohibitive amounts
of supervised training data. We propose to instead train a
differentiable model P̂ (called shadow program) of P , and
to iteratively approximate x∗ by gradient descent over P̂ .

IV. PARAMETER INFERENCE VIA SHADOW PROGRAM
INVERSION

We propose a three-step process to infer skill parameters
for a skill-based robot program: (1) Construction of a differ-
entiable surrogate (shadow program, P̂), which predicts the
expected trajectory (TCP poses and wrenches) given input
parameters for all skills in the program; (2) unsupervised
training of the learnable components of this surrogate; and
(3) inference of optimal skill parameters via gradient-based
model inversion (cf. figure 1).

A. Shadow Model & Shadow Program Architecture

For a given skill-based robot program (such as a sequence
of DMPs) P , whose parameters are to be inferred, we begin
by constructing the differentiable shadow program P̂ . To
that end, we instantiate a differentiable shadow model for
each skill in P . Because we only consider skills which meet
definition III-A, we can propose one single, differentiable
shadow model architecture which can model any skill. This
architecture is illustrated in figure 2.
A shadow model of the i-th skill in a skill-based robot
program is a differentiable computational graph which com-
putes the expected trajectory Ŷi for a given input vector
xi and start state sin,i. We represent Ŷi as a sequence of
samples (Ŷi)t, 0 ≤ t < |Ŷi|, each of which contains the
current success probability psucc ∈ [0, 1], the probability
pEOS ∈ [0, 1] of the action being completed at time t, as
well as the TCP pose and wrench at time t. In figure 2,
xi contains the input parameters of a force-controlled spiral
search skill, and sin,i is set to the final state sout,i−1 of
the previous skill. The inclusion of psucc in Y permits the
inference of skill parameters with respect to skill-specific
success metrics. For a spiral search, it allows to specify an
objective function to maximize the probability of finding the
hole (cf. equation 3 and experiment V-C).
Echoing work in ∂P integrating algorithmic priors and deep
learning [30], [24], we do not predict the expected trajectory
Ŷi end-to-end. Instead, we bootstrap an initial prior trajectory
estimate Ỹi using a differentiable motion planner,3 which
produces a crude approximation of the trajectory without
interactions with the environment such as moving objects or
applying contact forces. We found that explicitly incorporat-
ing prior knowledge greatly reduced the amount of training
data required, particularly for long trajectories. For skills for
which no such algorithmic prior exists, we instead use a
generative neural network to bootstrap a prior trajectory from
xi and sin,i [34]. The posterior trajectory Ŷ is the sum of
the prior and the output of a deep residual Gated Recurrent
Unit (GRU) [35], which predicts the residual trajectory
Ŷres,i containing the context-dependent information about
interactions with the environment, such as (expected) forces
and torques. For the spiral search skill, for example, the
residual GRU learns to predict when and where a hole is

3For our experiments (see section V), we implemented simple differen-
tiable planners for linear motions, spiral motions and gripper motions by
reimplementing parts of orocos-kdl [31] and urdfpy [32] with PyTorch [33].

Fig. 2: A shadow model of a spiral search skill as part of a
larger shadow program.

likely to be found, and how the expected trajectory then
deviates from the prior Ỹi.
The shadow model architecture is sufficiently flexible to
model simple and complex skills with varying numbers and
types of parameters. Note that the “signature” (layout of the
parameter vector x) of a shadow model exactly matches that
of the skill it models. This permits the transfer of the inferred
parameters back to the original skill after inference (cf. IV-
C). Aside from the optional differentiable motion planner,
which will differ from skill to skill, the proposed shadow
model architecture can model any skill which meets the
skill definition in section III-A. This allows the automatic
construction of a shadow program for any complex skill-
based robot program by instantiating a shadow model for
each skill, and connecting the posterior state sout of each
shadow model to the prior state sin of the next.

B. Unsupervised Shadow Model Learning

Because shadow models are forward models of semi-
symbolic skills, they can be trained end-to-end on tuples
(x, sin,Y)4 to minimize the mean prediction error

Lpred(Ŷ ,Y) =
1

|Ŷ |

|Ŷ |=|Y |∑
n=1

(
wposLL2((Ŷ)n,pos, (Y)n,pos)

+ woriLori((Ŷ)n,ori, (Y)n,ori)

+ wftLL2((Ŷ)n,ft, (Y)n,ft)

+ wsuccLBCE((Ŷ)n,psucc
, (Y)n,psucc

)

+ wEOSLBCE((Ŷ)n,pEOS
, (Y)n,pEOS

)
)
,

(1)

a weighted sum of the squared pointwise L2 distance LL2 for
TCP position and wrench, the pointwise binary crossentropy

4In our implementation, sout can be deterministically computed from the
output trajectory Ŷ and does not need to be learned explicitly.

Fig. 3: SPI (right) permits inference of skill parameters (x0

and x1) w.r.t. task objectives GΦ for non-differentiable robot
programs (left).

loss LBCE for psucc and pEOS , and the pointwise angle
between quaternion-encoded TCP orientations

Lori(ŷ,y) = cos−1(2〈ŷori,yori〉2 − 1). (2)

〈q1, q2〉 denotes the inner product of quaternions q1 and q2.
(Y)n,pos denotes the position component of the n-th point on
trajectory Y . Training data can be collected autonomously
by sampling inputs x and initial states sin, executing the
original (non-differentiable) skills and recording the resulting
trajectories. In real-world settings, in which programs are
executed repeatedly over long periods of time, this permits
the efficient use of readily available unsupervised data and
facilitates automatic finetuning of the model as new obser-
vations become available. Because of the Markov property,
shadow models can be trained separately from one another,
conditional on the start state sin, to form a library of trained,
differentiable shadow models.

C. Gradient-based Shadow Program Inversion

To infer optimal parameters for a given skill-based robot
program, we construct the corresponding shadow program
by sequentially chaining trained shadow models via sin and
sout (see figure 3). The shadow program is a differentiable
graph-of-graphs; its differentiability permits the efficient,
gradient-based optimization of the input parameters xi, 0 ≤
i < n of all n skills of in the program with respect to
an arbitrary, differentiable objective function GΦ for task
objectives Φ. To perform this optimization, we use Neu-
ral Network Iterative Inversion (NNII) [36]: We randomly
initialize the xi, perform a forward pass and compute the
loss GΦ(Ŷ). We exploit the differentiability of the program
graph to backpropagate the gradients ∂GΦ(Ŷ)

∂xi
and update the

xi according to the Adam update rule [37]. Iterating until
convergence yields the xi which minimize GΦ.
With differentiability w.r.t. Ŷ the sole requirement, a wide

range of objective functions can be applied. In an industrial
context, typical optimization targets include process metrics
such as cycle time (Gcycle), failure rate (Gfail) or path length
(Gpath). The inclusion of meta information pEOS and psucc
in Ŷ permits the succinct expression of the corresponding
objective functions:

Gfail(Ŷ) = −max
(

0,min
(1

|Ŷ |

|Ŷ |∑
n=1

(Ŷ)n,psucc
, 1
))

(3)

Gcycle(Ŷ) =

|Ŷ |∑
n=1

(
1− σ

(
(Ŷ)n,pEOS

− 0.5
)
∗ T
)

(4)

Gpath(Ŷ) =
1

|Ŷ |

|Ŷ |−1∑
n=1

(
‖(Ŷ)n+1,pos − (Ŷ)n,pos‖

+ Lori((Ŷ)n+1,ori, (Ŷ)n,ori)
) (5)

σ is the sigmoid function, T a constant (here T = 100) and
Lori as defined in eqn. 2. Joint optimization of multiple met-
rics at the same time can be realized by linear combination.
SPI as described above has several properties which make
it both theoretically attractive and practically applicable in
real-world scenarios:

1) Asymptotic optimality: If GΦ is the objective
function of the equivalent minimization problem to
argmaxx Φ(P (sin,x)), x will approximate the optimal pa-
rameters x∗, provided GΦ is convex, P is faithfully approxi-
mated by the shadow program, gradients are bounded and the
learning rate is small [37]. In practice, near-optimal solutions
can be reached in a few hundred iterations.

2) Separation of learning from inference: Because the
learning problem is reduced to learning a forward model of
the program, parameter inference is decoupled from training
and therefore very fast. Individual shadow models can be
trained offline and combined to arbitrary shadow programs
at inference time. Parameter inference itself does not require
additional training, exploration or expensive policy search.

3) Zero-shot generalization: By extension, our approach
permits parameter inference with respect to arbitrary objec-
tive functions without requiring additional training examples.
The same robot program can be optimized for different
task objectives Φ by simply changing the loss function GΦ

accordingly and rerunning NNII.

V. EXPERIMENTS

To evaluate our approach in a wide variety of real-world
applications, we apply SPI to infer program parameters
from human demonstrations for pick-and-place tasks in a
household scenario, impact force optimization for contact
motions and the inference of spiral search heuristics in the
context of electronics assembly.

A. Parameter Inference for Complex Task Objectives
In this experiment, we demonstrate the capacity of SPI

to infer parameters with respect to complex task objectives
from scratch. To that end, a household task of picking up a
glass and depositing it in a sink is considered. Given only a
program structure (a sequence of unparameterized skills), a
set of parameters is to be inferred which closely approx-
imates a human demonstration of the task. The program
consists of a linear approach motion, opening the gripper,
a sequence of 3 linear transfer motions, a skill to close the
gripper and a linear depart motion.5 Skill parameters are

5The skill representation for which parameters are inferred in experiments
V-A, V-B.1 and V-C is the ArtiMinds Robot Task Model (ARTM) [38],
a non-differentiable industrial implementation of generalized manipulation
strategies [3].

Fig. 4: Experiment V-A: Human demonstration (green) and
trajectory after parameter inference (red) in 3D (left); 2D
projections onto a position and orientation dimension and
the gripper opening (middle); real-world execution (right).

Fgoal 3N 4N 5N 6N 7N

ARTM
0.69
-75%

0.54
-69%

0.54
51%

0.38
-64%

0.77
-51%

Fig. 5: Experiment V-B: Optimization of contact motions
(bottom left). Each cell shows the mean deviation from Fgoal

over 250 optimizations and the improvement over the initial
parameterization. Right: Convergence behavior of SPI for the
velocity parameter and resulting force trajectories for Fgoal

= 5 N for a linear motion ARTM skill.

initialized randomly and comprise the goal poses, velocities
and accelerations of the linear motions as well as the target
joint state and velocity of the gripper skills. Program param-
eters were inferred to minimize a combination of pointwise
distance Gd between the TCP and the demonstration as well
as the demonstrated and predicted hand openings, and a grasp
penalty Gg enforcing additional precision during grasps.
Minimizing Gd and Gg is a challenging optimization problem
because the dynamics of the demonstration and predicted
trajectories are vastly different, and SPI must implicitly
adapt the velocities and accelerations of the skills first in
order to make the predicted trajectories comparable to the
demonstration. Four human demonstrations were collected in
virtual reality (VR) using the KnowRob framework [39]. For
this use case, the gripper state was included in S and Y . Real-
world experiments were conducted using a Universal Robots
UR5 industrial manipulator and a Robotiq 2FG-85 parallel
gripper. Results are shown in figure 4. For each of the four
demonstrations, parameter inference results in a robot motion
which closely approximates the human demonstrations, but
obeys the constraints such as linearity imposed by the skills.
The results testify to the capacity of SPI to jointly infer skill
inputs for realistic robot programs, even if the initial program
parameters are far from the optimum.

Rubber PCB Foam

Fgoal 5N 10N 20N 1N 5N 8N 1N 1.5N 2N

URScript
1.43
-75%

1.63
-84%

2.76
-84%

0.16
-92%

0.68
-71%

0.95
-80%

0.24
-36%

0.15
-51%

0.16
-74%

DMP
0.56
-96%

0.65
-94%

2.55
-85%

0.14
-90%

0.18
-93%

0.26
-95%

0.16
-60%

0.21
-54%

0.17
-78%

Fig. 6: Experiment V-B.2: Optimization of contact motions
for different skill frameworks and surfaces. Each cell shows
the mean deviation from Fgoal over 100 optimizations from
random initial parameters (in N) and the improvement of
this error over the initial parameterization.

B. Force-Sensitive Manipulation Without Expert Knowledge

1) Data-driven optimization of contact forces: To evaluate
our approach in the context of industrial manipulation, we
consider the task of touching a surface with a specific
impact force. In a first series of tests, we use SPI to
optimize the motion direction, velocity v and acceleration
a of a linear contact motion skill, which moves the robot
in a given direction until a force Fgoal is registered.
Contact motions are difficult to parameterize manually
because the true contact force Fcontact is determined by
a spring-mass-damper system composed of the robot and
the contact surface with unknown dampening and spring
characteristics. Fgoal merely imposes a lower bound on the
maximum force, with v and a determining the true force on
contact (cf. figure 5 (gray)). A shadow model was trained
on 50000 simulated and 500 real executions with randomly
sampled values of v and a. The task objective consisted
of a linear combination of Gcycle and the mean squared
error between the predicted contact force and Fgoal. We
ran SPI for goal forces between 3 and 7 N , collecting 250
inferred parameterizations for each goal force and randomly
initializing v and a. A total of 1250 optimized programs
were executed on a Fanuc LR Mate 200iD/7L manipulator
and FS-15iA force-torque sensor (FTS).
For goal forces between 3 and 5 N , the optimized
parameterizations produce maximum contact forces very
close to the target force (cf. figure 5, bottom left),
demonstrating the capability of our approach to zero-shot
generalize across task objectives (in this case, different
values of Fgoal). Figure 5 (top right) illustrates the
convergence behavior of our optimizer for a goal force of 5
N , which converges on a globally optimal velocity in under
40 NNII iterations regardless of the initial parameterization.
Figure 5 (bottom right) shows the force trajectories resulting
from executing the 250 resulting parameterizations.

2) Generalization to different skill representations: In a
second series of experiments, we use SPI over shadow skills
to parameterize low-level primitives with respect to three dif-
ferent surfaces with very different dampening characteristics.
To illustrate the universality of SPI, we optimize the target
pose, velocity and acceleration parameters of the movel
URScript primitive [6] as well as the temporal scaling
parameter τ and the target pose of a linear discrete DMP
[40] to establish Fgoal. The experiments were conducted on
a Universal Robots UR5e. The results summarized in table
6 show that the inferred parameterizations produce contact
forces well within 0.25 N of the goal on most surfaces,
which is in the order of sensor noise. For both DMPs and
URScript skills, SPI could adapt parameters to dampening
characteristics ranging from near-linear (foam) to highly
nonlinear (rubber) for a wide range of contact forces.

C. Zero-Shot Generalization Across Task Objectives

To illustrate the capacity of SPI to zero-shot generalize
across task objectives, we consider a further use case of
finding the position of a set of holes on a printed circuit board
(PCB) for the insertion of electronics components. In prac-
tice, manufacturing tolerances cause stochastic deviations
from the expected hole positions on the order of millimeters,
requiring the use of force-controlled search motions. An pro-
gram structure to solve this task consists of a linear approach
motion followed by a force-controlled spiral search (cf. figure
3). The spiral search skill accepts inputs wx and wy defining
the extents of the spiral motion along its principal axes, the
distance d between spiral arms, force runtime constraints
Fmin, Fmax, position goal constraints zmin, zmax, velocity
v and acceleration a and performs a spiral motion in the
xy-plane of the TCP, maintaining a force between Fmin and
Fmax along the z-axis of the TCP, succeeding if a depth
between zmin and zmax can be reached. Shadow models for
both skills were pre-trained on 50000 simulated executions
and fine-tuned on 2500 real samples using a Fanuc LR Mate
200iD/7L and FS-15iA FTS. We collected two baseline test
datasets of 250 samples each, one with randomly initial-
ized input parameters and one parameterized by a human
expert. Parameter inference was conducted from initial input
parameters set to the respective baseline parameterization. To
demonstrate zero-shot generalization across task objectives,
program parameters were optimized with respect to Gcycle,
Gfail, Gpath (cf. 4) as well as linear combinations.
The optimized parameterizations consistently yield improve-
ments for their corresponding metrics (cf. figure 7). Com-
pared to the already robust human expert parameterization,
the optimized parameterization nearly eliminates failures
altogether. Joint parameter inference with respect to a combi-
nation of task objectives yields gains in both metrics. Figure
7 shows examples for spiral motions resulting from the op-
timized policies. Optimization with respect to different task
objectives results in fundamentally different search policies,
such as a “fail fast” policy for minimizing path length or a
very robust policy for minimizing failure rate and cycle time
which near-optimally fits the hole distribution.

Fig. 7: Experiment V-C: Top: Stochastic variations of the
hole position cause a manually parameterized spiral search
to fail, while an inferred parameterization is more robust.
Middle: Process metrics for optimized programs relative to
random (left) and expert (right) baselines (log scale). Bottom:
Spiral search policies for different objective functions.

VI. CONCLUSION AND OUTLOOK

We present an approach for inferring the input param-
eters of skill-based robot programs by a combination of
unsupervised learning and gradient-based iterative model
inversion. To our knowledge, this is the first application of
differentiable programming and NNII to the skill parameteri-
zation problem in robotics. We show that SPI can effectively
infer optimal parameters for robot programs composed from
non-differentiable skill frameworks. Application to force-
sensitive contact motions and search heuristics for electronics
assembly demonstrate its capability to adapt parameters
to nonlinear system dynamics or stochastic process noise.
Zero-shot generalization across task objectives and exclusive
reliance on unsupervised training establish SPI as a powerful
solution for parameter inference in real-world use cases.
Like all first-order optimization methods, the performance of
SPI is conditional on the topology of the objective function.
We are investigating the possibility of augmenting NNII
by hessian-free optimization to further improve performance
[41]. We further observe that reinforcement learning (RL)-
based robot learning approaches require a solution to locally
optimize skill parameters [42], [43], motivating further in-
quiry on synergies between SPI and RL for robot learning.

ACKNOWLEDGMENT

This work was supported by the Federal Ministry of Edu-
cation and Research (BMBF) under grant no. 01DR19001B.

REFERENCES

[1] S. Schaal, “Dynamic Movement Primitives -A Framework for Motor
Control in Humans and Humanoid Robotics,” in Adaptive Motion of
Animals and Machines, H. Kimura, K. Tsuchiya, A. Ishiguro, and
H. Witte, Eds. Springer, 2006, pp. 261–280.

[2] L. P. Kaelbling and T. Lozano-Perez, “Hierarchical task and motion
planning in the now,” in ICRA, May 2011, pp. 1470–1477.

[3] R. Jäkel, “Learning of Generalized Manipulation Strategies in Ser-
vice Robotics,” Ph.D. dissertation, Karlsruhe Institute of Technology,
Karlsruhe, 2013.

[4] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind,
“Automatic Differentiation in Machine Learning: A Survey,” J. Mach.
Learn. Res., vol. 18, no. 153, pp. 1–43, 2018.

[5] M. Innes, A. Edelman, K. Fischer, C. Rackauckas, E. Saba, V. B. Shah,
and W. Tebbutt, “A Differentiable Programming System to Bridge
Machine Learning and Scientific Computing,” ArXiv190707587 Cs,
July 2019.

[6] “The URScript Programming Language,” Universal Robots, Tech.
Rep., Apr. 2018.

[7] Y. Liang, F. Hong, Q. Lin, S. Bi, and L. Feng, “Optimization of
robot path planning parameters based on genetic algorithm,” in 2017
IEEE International Conference on Real-time Computing and Robotics
(RCAR), July 2017, pp. 529–534.

[8] D. Urieli, P. MacAlpine, S. Kalyanakrishnan, Y. Bentor, and P. Stone,
“On optimizing interdependent skills: A case study in simulated 3D
humanoid robot soccer,” in AAMAS, 2011.

[9] J. A. Marvel, W. S. Newman, D. P. Gravel, G. Zhang, Jianjun Wang,
and T. Fuhlbrigge, “Automated learning for parameter optimization
of robotic assembly tasks utilizing genetic algorithms,” in 2008 IEEE
International Conference on Robotics and Biomimetics, Feb. 2009, pp.
179–184.

[10] F. Berkenkamp, A. Krause, and A. P. Schoellig, “Bayesian Optimiza-
tion with Safety Constraints: Safe and Automatic Parameter Tuning
in Robotics,” ArXiv160204450 Cs, Apr. 2020.

[11] R. Calandra, A. Seyfarth, J. Peters, and M. P. Deisenroth, “Bayesian
optimization for learning gaits under uncertainty,” Ann Math Artif
Intell, vol. 76, no. 1, pp. 5–23, Feb. 2016.

[12] R. Akrour, D. Sorokin, J. Peters, and G. Neumann, “Local Bayesian
Optimization of Motor Skills,” in International Conference on Ma-
chine Learning. PMLR, July 2017, pp. 41–50.

[13] C. Finn and S. Levine, “Deep visual foresight for planning robot
motion,” in ICRA, 2017.

[14] O. Mees, M. Merklinger, G. Kalweit, and W. Burgard, “Adversarial
Skill Networks: Unsupervised Robot Skill Learning from Video,”
ICRA, Feb. 2020.

[15] S. Nair, M. Babaeizadeh, C. Finn, S. Levine, and V. Kumar, “Time
Reversal as Self-Supervision,” in ICRA, 2020.

[16] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine,
and P. Sermanet, “Learning Latent Plans from Play,” ArXiv190301973
Cs, Mar. 2019.

[17] E. Parisotto, A.-r. Mohamed, R. Singh, L. Li, D. Zhou, and P. Kohli,
“Neuro-Symbolic Program Synthesis,” ArXiv161101855 Cs, Nov.
2016.

[18] S. Reed and N. de Freitas, “Neural Programmer-Interpreters,”
ArXiv151106279 Cs, Nov. 2015.

[19] M. Rabinovich, M. Stern, and D. Klein, “Abstract Syntax Networks
for Code Generation and Semantic Parsing,” in Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Vancouver, Canada: Association for
Computational Linguistics, July 2017, pp. 1139–1149.

[20] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka,
A. Grabska-Barwińska, S. G. Colmenarejo, E. Grefenstette, T. Ra-
malho, J. Agapiou, A. P. Badia, K. M. Hermann, Y. Zwols, G. Ostro-
vski, A. Cain, H. King, C. Summerfield, P. Blunsom, K. Kavukcuoglu,
and D. Hassabis, “Hybrid computing using a neural network with
dynamic external memory,” Nature, vol. 538, no. 7626, pp. 471–476,
Oct. 2016.

[21] A. L. Gaunt, M. Brockschmidt, N. Kushman, and D. Tarlow, “Dif-
ferentiable Programs with Neural Libraries,” in ICML, July 2017, pp.
1213–1222.

[22] M. Bošnjak, T. Rocktäschel, J. Naradowsky, and S. Riedel, “Program-
ming with a Differentiable Forth Interpreter,” in ICML, July 2017, pp.
547–556.

[23] K. Kurach, M. Andrychowicz, and I. Sutskever, “Neural Random-
Access Machines,” ArXiv151106392 Cs, Nov. 2015.

[24] M. Garnelo, D. Rosenbaum, C. Maddison, T. Ramalho, D. Saxton,
M. Shanahan, Y. W. Teh, D. Rezende, and S. M. A. Eslami, “Condi-
tional Neural Processes,” in ICML, July 2018, pp. 1704–1713.

[25] M. Y. Seker, M. Imre, J. Piater, and E. Ugur, “Conditional Neural
Movement Primitives,” in RSS, vol. 15, June 2019.

[26] M. T. Akbulut, E. Oztop, M. Y. Seker, H. Xue, A. E. Tekden, and
E. Ugur, “ACNMP: Skill Transfer and Task Extrapolation through
Learning from Demonstration and Reinforcement Learning via Rep-
resentation Sharing,” ArXiv200311334 Cs, Nov. 2020.

[27] A. Pervez, Y. Mao, and D. Lee, “Learning deep movement primitives
using convolutional neural networks,” in Humanoids, Nov. 2017, pp.
191–197.

[28] P. Karkus, X. Ma, D. Hsu, L. P. Kaelbling, W. S. Lee, and T. Lozano-
Perez, “Differentiable Algorithm Networks for Composable Robot
Learning,” ArXiv190511602 Cs Stat, May 2019.

[29] Y. Zhou, J. Gao, and T. Asfour, “Movement Primitive Learning
and Generalization: Using Mixture Density Networks,” IEEE Robot.
Automat. Mag., vol. 27, no. 2, pp. 22–32, June 2020.

[30] M. Bhardwaj, B. Boots, and M. Mukadam, “Differentiable Gaussian
Process Motion Planning,” ArXiv190709591 Cs, Mar. 2020.

[31] “Orocos Kinematics and Dynamics Library,” Open Robot Control
Software, Oct. 2020.

[32] M. Matl, “Urdfpy,” Sept. 2020.
[33] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style, High-
Performance Deep Learning Library,” in Advances in Neural Informa-
tion Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d\textquotesingle Alché-Buc, E. Fox, and R. Garnett, Eds.
Curran Associates, Inc., 2019, pp. 8026–8037.

[34] A. Graves, “Generating Sequences With Recurrent Neural Networks,”
ArXiv13080850 Cs, June 2014.

[35] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning Phrase Representations us-
ing RNN Encoder–Decoder for Statistical Machine Translation,” in
EMNLP, Doha, Qatar, Oct. 2014, pp. 1724–1734.

[36] D. A. Hoskins, J. N. Hwang, and J. Vagners, “Iterative inversion of
neural networks and its application to adaptive control,” IEEE Trans.
Neural Netw., vol. 3, no. 2, pp. 292–301, Mar. 1992.

[37] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-
tion,” ArXiv14126980 Cs, Jan. 2017.

[38] S. R. Schmidt-Rohr, R. Jäkel, and G. Dirschl, “ArtiMinds Robot
Programming Suite,” ArtiMinds Robotics GmbH, 2013.

[39] M. Beetz, D. Bessler, A. Haidu, M. Pomarlan, A. K. Bozcuoglu,
and G. Bartels, “Know Rob 2.0 — A 2nd Generation Knowledge
Processing Framework for Cognition-Enabled Robotic Agents,” in
ICRA, May 2018, pp. 512–519.

[40] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical Movement Primitives: Learning Attractor Models for
Motor Behaviors,” Neural Comput., vol. 25, no. 2, pp. 328–373, Feb.
2013.

[41] J. Martens, “Deep learning via Hessian-free optimization,” in Proceed-
ings of the 27th International Conference on International Conference
on Machine Learning, ser. ICML’10. Madison, WI, USA: Omnipress,
June 2010, pp. 735–742.

[42] P. Englert and M. Toussaint, “Learning manipulation skills from a
single demonstration,” The International Journal of Robotics Research,
vol. 37, no. 1, pp. 137–154, Jan. 2018.

[43] ——, “Combined Optimization and Reinforcement Learning for Ma-
nipulation Skills,” in Robotics: Science and Systems XII, vol. 12, June
2016.

	I Introduction
	II Related Work
	II-.1 Robot skill parameter inference
	II-.2 Unsupervised representation learning
	II-.3 Differentiable programming

	III Definitions & Problem Statement
	III-A Definition: Skill-based Robot Program
	III-B Problem Statement: Robot Program Parameter Inference

	IV Parameter Inference via Shadow Program Inversion
	IV-A Shadow Model & Shadow Program Architecture
	IV-B Unsupervised Shadow Model Learning
	IV-C Gradient-based Shadow Program Inversion
	IV-C.1 Asymptotic optimality
	IV-C.2 Separation of learning from inference
	IV-C.3 Zero-shot generalization

	V Experiments
	V-A Parameter Inference for Complex Task Objectives
	V-B Force-Sensitive Manipulation Without Expert Knowledge
	V-B.1 Data-driven optimization of contact forces
	V-B.2 Generalization to different skill representations

	V-C Zero-Shot Generalization Across Task Objectives

	VI Conclusion and Outlook
	References

