
Shadow Program Inversion with Differentiable Planning: A Framework
for Unified Robot Program Parameter and Trajectory Optimization

Benjamin Alt1,2,∗,†, Claudius Kienle1,∗, Darko Katic1, Rainer Jäkel1 and Michael Beetz2

Abstract— This paper presents Shadow Program Inversion
with Differentiable Planning (SPI-DP), a novel first-order opti-
mizer capable of optimizing robot programs with respect to
both high-level task objectives and motion-level constraints.
To that end, we introduce Differentiable Gaussian Process
Motion Planning for N-DoF Manipulators (dGPMP2-ND), a
differentiable collision-free motion planner for serial N-DoF
kinematics, and integrate it into an iterative, gradient-based
optimization approach for generic, parameterized robot pro-
gram representations. SPI-DP allows first-order optimization
of planned trajectories and program parameters with respect
to objectives such as cycle time or smoothness subject to e.g.
collision constraints, while enabling humans to understand,
modify or even certify the optimized programs. We provide
a comprehensive evaluation on two practical household and
industrial applications.

I. INTRODUCTION

Intuitive robot programming has eased the use of robots
to solve real-world applications. However, the cost of au-
tomation is often driven by the iterative optimization of
robot trajectories and program parameters, particularly for
complex manipulation tasks. This optimization is done by
skilled programmers through time-consuming trial and error.
“Programming by optimization” [1] allows a human pro-
grammer to specify a rough program skeleton, which is then
completed by an optimization algorithm. This approach is
particularly useful in tactile applications like force-controlled
insertion or handling of deformable objects. However, apply-
ing general-purpose optimization methods to robot programs
is challenging as the success of a robot skill depends on the
parameterization of the preceding skills: An optimizer must
jointly optimize the parameters of complete skill sequences
or hierarchically composed subprograms. Moreover, robots
must not only achieve task-level goals such as cycle time
requirements, but also respect motion-level constraints such
as collision-freeness or proximity to a human demonstration.
Existing approaches focus exclusively on either trajectory
optimization [2]–[5] or parameter optimization [6]–[9] and
typically optimize individual skills, rather than jointly opti-
mizing complete robot programs.

In this paper, we propose Shadow Program Inversion with
Differentiable Planning (SPI-DP), a robot program optimizer
which combines both trajectory and parameter optimization

This work was supported by the German Federal Ministry of Education and
Research (grant 01MJ22003B), the DFG CRC EASE (CRC #1320) and the
EU project euROBIN (grant 101070596).
∗Authors contributed equally to this paper
†Corresponding author: benjamin.alt@uni-bremen.de
1ArtiMinds Robotics, Karlsruhe, Germany
2Institute for Artificial Intelligence, University of Bremen, Germany

Fig. 1. Shadow Program Inversion with Differentiable Planning (SPI-DP)
enables the optimization of robot programs (left, red) by first-order iterative
optimization over a differentiable surrogate (right, gray). A differentiable
collision-free motion planner (dGPMP2-ND) ensures that the resulting
motion trajectories are optimal with respect to task objectives and motion-
level constraints.

with respect to task- and motion-level constraints. We make
the following contributions:

1) We present Differentiable Gaussian Process Motion
Planning for N-DoF Manipulators (dGPMP2-ND),
a differentiable motion planner for serial N-degree
of freedom (DoF) manipulators, capable of propagating
gradients through the collision-free planning proce-
dure.1

2) We introduce SPI-DP, an approach for unifying pro-
gram parameter and trajectory optimization capable
of optimizing robot programs with respect to a wide
range of objective functions, including task-specific
metrics and goals demonstrated by humans.

3) We provide a real-world evaluation of the proposed
framework on household pick-and-place as well as
industrial peg-in-hole applications.

To our knowledge, SPI-DP is the first approach to combine
parameter and trajectory optimization for robot programs in
one unified framework.

II. RELATED WORK

1) Robot program parameter optimization: In the context
of “programming by optimization” [1], a wide array of
optimizers have been proposed, with a majority employing
zero-order algorithms such as evolutionary or mutation-based
algorithms [10]–[14], particle swarms [11], [15], [16] or
Bayesian optimization [8], [16]–[18]. First-order optimizers

1The source code for dGPMP2-ND is available at https://github.
com/benjaminalt/dgpmp2-nd.

ar
X

iv
:2

40
9.

08
67

8v
1 

 [
cs

.R
O

] 
 1

3 
Se

p 
20

24

https://github.com/benjaminalt/dgpmp2-nd
https://github.com/benjaminalt/dgpmp2-nd


propose to leverage gradient information for fast, stable
convergence. Differentiable programming (∂P) proposes to
represent programs as differentiable computation graphs
(DCGs), which permit gradient computation for program pa-
rameters via automatic differentiation [19]–[21]. In robotics,
∂P has been primarily used to optimize control parameters
in conjunction with differentiable physics engines [22]–[26],
or as differentiable policies in reinforcement learning [27]–
[30]. Our approach proposes to represent robot programs as
DCGs, comprising differentiable planners and artificial neu-
ral networks (ANNs), for first-order optimization of program
parameters.

2) Trajectory optimization: Program parameter optimiza-
tion has typically been considered separately from the opti-
mization of motion trajectories. First-order methods such as
CHOMP [2] promise fast convergence due to the exploitation
of gradient information [4], [31]–[34]. Gaussian Process
Motion Planning (GPMP) [35]–[38] represents robot trajec-
tories as a Gaussian process (GP) and realizes optimization
by iteratively minimizing an objective function comprising
smoothness and collision constraints. We generalize Differ-
entiable Gaussian Process Motion Planning (dGPMP2) [37],
a first-order extension of GPMP, to N-DoF serial kinematics,
add additional constraints such as human demonstrations
and integrate it as a gradient-preserving path planner in-
side a first-order program optimizer. To our knowledge,
we contribute the first gradient-based framework for jointly
optimizing robot program parameters and motion trajectories.

III. SHADOW PROGRAM INVERSION: A PRIMER

Our proposed framework is based on differentiable
Shadow Program Inversion (SPI), a model-based first-order
optimizer for robot program parameters [7], [39], [40], which
is briefly outlined below. On the basis of SPI and a differ-
entiable N-DoF motion planner (see Sec. IV), we present
a novel double-loop first-order optimizer capable of jointly
optimizing program parameters and motion trajectories (see
Sec. V).

A. Differentiable Shadow Programs

The core of our framework is the concept of a shadow
program: A differentiable “twin” of a robot program which
serves as its surrogate for learning and optimization. The
source program, which is written by the programmer and
ultimately executed on the robot, and its shadow used for
learning and optimization, are representationally decoupled:
The source program can be expressed in any parameterized
representation, such as the textual or skill-based representa-
tions used by modern robot programming frameworks [41]–
[43].

Given a source program P (x, θ0), we seek to optimize
the program parameters x, given initial robot state θ0. P
is modeled as a function P : RN × Θ → ΘT , mapping a
real-valued N -dimensional parameter vector x ∈ RN and
joint angles θ in state space Θ to the robot trajectory θ ∈
ΘT , where T is the number of timesteps. The state space

is composed of robot joint configurations and end-effector
wrenches: Θ = C × R6.

The shadow program P̄ is a generative model of P , trained
to approximate the real-world robot trajectory θ for a given
set of program parameters x and initial state θ0 [7]. A
central property of P̄ is that it is differentiable, allowing
the computation of the gradient of a task-specific objective
Φ over the trajectory with respect to the program’s input
parameters, and, as a consequence, the optimization of x
using a gradient-based optimizer.

The shadow program architecture is modular, to reflect
the typically skill-based structure of most source programs.
An exemplary shadow program composed of two skills is
illustrated in Fig. 4. For the purpose of this paper, it is
important to note that shadow skills are generative models
of robot skills, predicting the expected real-world robot
trajectory given the skill’s parameters and the current robot
state. A differentiable planner bootstraps a naive prior trajec-
tory, which is then refined by a neural sequence-to-sequence
model to reflect expected real-world deviations from the plan
(see [7] for details).

B. Robot Program Parameter Optimization

Differentiable shadow programs enable parameter opti-
mization for near-arbitrary source programs in any parame-
terized representation. Consider a skill-based robot program
(here in pseudocode) for an industrial peg-in-hole task:

MoveArm(approach_pose)
SpiralSearch(spiral_extents, contact_force)
Insert(depth, pushing_force)

SpiralSearch and Insert are skills from a skill library,
and approach pose is a program parameter correspond-
ing to the end-effector pose from which the robot starts
searching for a hole in the workpiece. The duration of the
search depends on the position of the hole relative to the
approach pose. Consequently, the cycle time of this program
can be optimized by adapting approach pose to be, on
average, directly above the hole. SPI solves such parameter
optimization problems by first-order optimization over the
shadow program, using P̄ as a differentiable surrogate for
P [7]. The optimized parameters can be transferred back to
the source program P , validated and adjusted by a human
programmer, and executed on the robot.

C. Joint Parameter and Trajectory Optimization

For many tasks, program parameters and low-level motion
trajectories must be jointly optimized. One example is the
optimization of grasp poses to maximize grasp success:
The approach and depart motions must also be optimized
for collision-freeness, smoothness and other task constraints
whenever the grasp pose is changed. We integrate a differ-
entiable motion planner into the shadow program represen-
tation, which ensures that trajectories predicted in a forward
pass comply with motion-level constraints such as collision-
freeness, smoothness or proximity to a human demonstration.
The differentiable motion planner is described in detail in
Section IV.



Fig. 2. Left: Shadow Program Inversion with Differentiable Planning (SPI-DP) optimizes robot programs (left, red) with respect to nearly arbitrary task
objectives (Φ). Program parameters, such as the Force parameter of a placing action, can be optimized jointly with the low-level motion trajectories to
respect task-level objectives and motion-level constraints. By performing gradient-based optimization over a differentiable surrogate (“shadow” P̄ , gray),
the framework is applicable to near-arbitrary parameterized program representations, including most robot programming languages. Right: dGPMP2-ND
plans collision-free motions for N-DoF serial kinematics within SPI-DP’s optimization loop. Trajectories (black) are optimized with respect to collision
(blue), goal (green) and human demonstration (red) constraints, among others.

IV. DGPMP2-ND: DIFFERENTIABLE MOTION
PLANNING FOR N-DOF MANIPULATORS

The gradient-based optimization of programs containing
collision-free motion skills requires a differentiable planner.
We propose dGPMP2-ND, a differentiable collision-free mo-
tion planner for N-DoF manipulators, which generates trajec-
tories that conform to motion constraints such as collision-
freeness, smoothness, adherence to joint limits or precision at
a target pose. To that end, we extend and modify dGPMP2
[37] by implementing differentiable collision checking for
three-dimensional collision worlds and N-DoF serial kine-
matics, adding a joint limit constraint as well as a factor
rewarding similarity to a human demonstration.

A. Differentiable Gaussian Motion Planning

dGPMP2 casts motion planning as inference on a factor
graph [37] and minimizes a cost functional F(θ) over
trajectory θ via an iterative optimization procedure [36].

Figure 3 illustrates dGPMP2-ND. While dGPMP2 plans in
Cartesian space, dGPMP2-ND plans joint-space trajectories.
This permits to integrate joint limit constraints, while still
supporting end-effector pose constraints by applying a dif-
ferentiable forward kinematics on the joint-space trajectory.
At each planner iteration j, 1 ≤ j ≤ jmax, a set of factors
is evaluated. Given the current joint trajectory θj , each
factor computes an error h(θ), a Jacobian H indicating
the direction of steepest descent to minimize the error, and
an inverse covariance Σ−1 to weight the different factors.
We propose six such factors:

1) A Gaussian process (GP) prior factor, which penalizes
points on the joint trajectory that deviate from the mean
defined by a GP prior (see [36] for details). For each
point on the trajectory, the Jacobian HGP indicates the
direction toward the GP mean.

2) A start state prior, which penalizes the deviation of the
first point on θj from a predefined start configuration.
For the first point on θj , the Jacobian Hstart indicates
the direction toward the start configuration.

3) A goal state prior, which penalizes the deviation of the
last point on θj from a predefined goal configuration.
For the last point on θj , the Jacobian Hgoal indicates
the direction toward the goal configuration.

4) A collision factor (see Sec. IV-B).
5) A joint limit factor (see Sec. IV-C).
6) A demonstration prior (see Sec. IV-D).

The GP, start and goal state priors remain unchanged from
the original dGPMP2 formulation, albeit extended to the
N-DoF case. We contribute novel differentiable collision
and joint limit factors, as well as a differentiable Cartesian
demonstration prior.

At each iteration, the linear system

(K−1 +HTΣ−1H)δθ = −K−1(θi −µ)−HTΣ−1h(θj)

is solved for δθ, where H is the combined Jacobian, Σ−1 is
the combined inverse covariance, K−1 is the inverse kernel
matrix of the GP and h(θj) is the combined error function.
All matrices are combined by concatenating the matrices of
the individual factors along the row axis. The trajectory is
then incrementally updated: θj+1 = θj + r ∗ δθ, where r is



Fig. 3. Differentiable Gaussian Process Motion Planning for N-DoF Manip-
ulators (dGPMP2-ND) permits motion planning with respect to joint-space
and Cartesian constraints and objectives. It realizes trajectory optimization
by iterative solving of a linear system, permitting the backpropagation of
gradients through the planner.

the update rate.
As dGPMP2-ND is used as a differentiable planner inside

another iterative optimization process, the total number of
iterations required by dGPMP2-ND until convergence must
be kept as small as possible. To that end, r is initalized at
a high value (r=0.3), leaving it constant while the collision
error hcoll > 0, and decay it by factor 0.1 at each iteration.
Moreover, optimization is stopped before jmax is reached
when hcoll has not decreased for 25 iterations or the total h
has decreased by less than 5% for 25 iterations.

B. Differentiable N-DoF Collision Factor

Bhardwaj et al. [37] propose a collision factor for 2D
environments and a point robot. We extend their approach to
3D environments, joint-space trajectories, and N-DoF serial
robot kinematics. Before planning, we precompute a 3D
signed distance field (SDF) of the environment, where each
voxel contains the signed distance from the voxel center to
the next obstacle. For all states on joint trajectory θ, we
compute the Cartesian poses and Jacobians of all links using
differentiable forward kinematics [44]. For each link and
each time step, we identify the SDF voxel that intersects with
the collision mesh of the link and has the smallest distance to
the collision environment. To compute a differentiable error,
we then take for each identified voxel the weighted mean
of the 26 surrounding voxels, resulting in a vector pointing
away from the nearest collision. The resulting Jacobian
equals the matrix multiplication of the Jacobian for each link
and the Jacobian for the differentiable error.

C. Joint Limit Factor

To ensure that joint-limit constraints of the manipulator
are met, we extend dGPMP2 by a joint limit factor. For each
state on the joint trajectory θ, the joint limit error

hlim =


θ − θlim if θ > θlim

−θlim − θ if θ < −θlim

0 otherwise

penalizes trajectory states which exceed or fall below the
joint limits θlim. Hlim is the identity matrix for values
outside the limits, zero otherwise.

D. Demonstration prior

For many planning problems, human demonstrations can
be leveraged to guide the planner toward good solutions,
speeding up convergence. We extend dGPMP2 by a prior
factor which penalizes trajectories that deviate from a refer-
ence trajectory, such as a human demonstration. For every
state on the joint trajectory θ, we compute the Cartesian
end-effector pose p and Jacobian Htraj . The demonstration
prior error htraj is the pointwise difference between p and
the corresponding point on the reference trajectory.

Taken together, dGPMP2-ND permits collision-free mo-
tion planning by iterative optimization, while respecting
additional motion-level constraints such as joint limits or
adherence to a reference trajectory. dGPMP2-ND is dif-
ferentiable end-to-end, permitting the differentiation of the
resulting trajectories with respect to input parameters such
as target poses.

V. JOINT TRAJECTORY AND PARAMETER OPTIMIZATION

For many real-world robot tasks, motion trajectories and
program parameters cannot be optimized in isolation. Grasp-
ing is a canonical example: Grasping an object with a given
grasp pose imposes constraints on the approach motion,
while e.g. collision objects in the environment make some
approach motions, and therefore grasp poses, impossible.
Grasp poses and approach motions must be jointly optimized
in order to achieve task-level objectives (a stable grasp) while
obeying motion-level constraints (collision-free approach).
With dGPMP2-ND, gradient-based optimization over differ-
entiable shadow programs permits the joint optimization of
motion trajectories and program parameters. Fig. 4 shows
the integration of dGPMP2-ND as a differentiable collision-
free motion planner into the shadow program architecture.
Shadow programs are differentiable, predictive models of
robot programs; with dGPMP2-ND, collision-free planning
becomes part of their forward pass.

A. Shadow Program Inversion with Differentiable Planning

With the integration of dGPMP2-ND in the shadow pro-
gram architecture, even complex multi-skill robot programs
involving collision-free planning skills are represented as dif-
ferentiable computation graphs. This enables the computation
of ∂Φ(θ)

∂x , the gradient of some task-level objective function
Φ of the predicted trajectory w.r.t. the program parameters x,
and the optimization of x by a first-order optimizer. We call
this procedure Shadow Program Inversion with Differentiable
Planning (SPI-DP). For each iteration i,

1) a forward pass through the shadow program is per-
formed, yielding a prediction of θ given initial inputs
x and start state θ0. This includes multiple iterations of
dGPMP2-ND as an inner-loop trajectory optimizer for
each shadow skill involving C-space planning;

2) a backward pass is performed to compute ∂Φ(θ)
∂x via

automatic differentiation [45];
3) the input parameters are incrementally updated via

gradient descent to minimize Φ. We use Adam [46] with



Fig. 4. A differentiable shadow program for a search-based insertion
task composed of two skills. By combining differentiable planners (blue)
and trained neural networks (light green), program parameters x can be
optimized with respect to task-level objectives Φ while respecting motion-
level constraints such as collision-freeness. A forward pass (top to bottom)
predicts the expected real-world trajectory given program parameters x and
robot state θ. The gradients of Φ are backpropagated and x is incrementally
optimized.

a relatively high learning rate, such as 0.001, for fast
convergence.

We find that the inner-loop dGPMP2-ND converges in less
than 20 iterations for most planning problems we encoun-
tered. In each outer-loop iteration j, planning results are
cached and used as the initial trajectories for dGPMP2-ND in
the next iteration j+1, avoiding redundant planning. We find
that one optimization iteration of a complex source program
with 15 skills takes about 19 seconds on an Nvidia RTX
4090 graphics processing unit (GPU).

B. Task-Level Objective Functions

As the learnable components of shadow skills are trained
offline to accurately predict the expected trajectory, the task
objective Φ does not need to be known at training time.
Given trained shadow skills, program parameters can be
optimized for near-arbitrary differentiable objective functions
Φ over the expected trajectory θ. For industrial applications,
the process metrics cycle time, path length and success

probability are most salient:

Φcyc(θ) =
∑|θ|

i=1 log(θi,EOS)

Φpath(θ) =
∑|θ|

i=2∥θi,pos − θi−1,pos∥
Φsucc(θ) =

∑|θ|
i=1 log(θi,succ)

Both the cycle time Φcyc and the success probability
Φsucc are defined as the binary cross-entropy of the end-
of-sequence and task success flags with a target label of
1. For Φsucc, this pushes the success probability of every
trajectory point to 1 resulting in higher success probability
of the execution. Φcyc pushes the end-of-sequence flag of
every trajectory point toward 1, such that the trajectory has
fewer points, which is equivalent to a reduced cycle time.
Φpath calculates the overall path length of the trajectory,
independent of the end-effector velocity.

With dGPMP2-ND, SPI-DP optimizes program parame-
ters subject to motion-level constraints such as collision-
freeness, joint limits or proximity to a human demonstration
(see VI-A and VI-B for details).

VI. EXPERIMENTS

A. Household Pick-and-Place with Human Demonstration

We evaluate our framework on a household table cleaning
scenario, in which a robot is tasked to pick up a cup from
a table and place it into a cupboard, while guaranteeing
collision-freeness (see VI-A.1). The motions are conditioned
on one single human demonstration. In a second set of exper-
iments, we demonstrate the zero-shot transfer to a different
object (a wine glass) and the simultaneous optimization of
the target pose (see VI-A.2). The experiments test three
hypotheses:
H1 Motion-level optimization: dGPMP2-ND is capable of

planning collision-free, smooth pick-and-place motions
that adhere to a single human demonstration for variable
target poses and different object geometries;

H2 Task-level optimization: SPI-DP can optimize the en-
tire robot program parameters for KPIs resulting in
reduced overall cycle-time while respecting imposed
contact-force limits;

H3 Joint optimization: SPI-DP is capable of jointly op-
timizing robot programs with respect to motion-level
(collision-freeness, human demonstration) and task-
level (cycle time, contact force) constraints.

The setup consists of a UR5 robotic arm with a flange-
mounted ATI Gamma force-torque sensor and a SCHUNK
pneumatic gripper. 10 demonstrations of a human transfer-
ring the cup from random pick-up poses to random target
poses are collected with an Intel RealSense RGB-D camera.
A human demonstration consists of the sampled 6D pose
trajectory of the center of the cup.

1) Cup Pick-and-Place: A robot program consisting of
approach, grasp, transfer, place and depart skills is optimized
to place the cup at one of four target poses on two different
shelf levels inside the cupboard. In this experiment, the



Fig. 5. Left: Experiment VI-A.1: 3D rendering of the collision world, 4
exemplary optimization results (green) and 10 human demonstrations (red).
Right: Experiment VI-A.2: Real-world execution of an optimized program.

approach motion is optimized to respect the motion-level
constraints illustrated in Fig. 3, with a collision environment
consisting of the robot, table, cup and cupboard, and a
Cartesian trajectory prior given by a human demonstration. A
total of 40 trials are performed, one for each combination of
target pose and human demonstration. The results are shown
in Fig. 5 (left). All optimized motions were collision-free,
even if the human demonstration contained a collision. The
target pose was reached with a mean accuracy of 0.6 mm.

2) Wine Glass Pick-and-Place with Target Pose Optimiza-
tion: The same robot program is optimized again, but the
manipulated object is swapped for a wine glass and the
gripper geometry is changed accordingly. In addition to
the transfer motion, we also optimize the target pose (a
parameter of the transfer skill) to minimize the cycle time
of the overall program. The real-world experiment setup
is shown in Fig. 5 (right). Again, 40 trials are performed,
one for each combination of initial target pose and human
demonstration. All optimized motions were collision-free
and closely adhered to the human demonstration. SPI-DP
optimized the target pose parameter resulting in motions
which were 2.8 cm shorter on average. It moved the target
pose as close to the shelf as possible, reducing cycle time
by 40 % while avoiding collisions.

B. Engine Block Poka-Yoke Testing with Force Control

This experiment tests the scalability of joint motion- and
task-level optimization for complex industrial robot pro-
grams. The task consists of a poka-yoke quality assurance
task, in which a UR5 robot arm approaches three holes
on an engine block and executes a force-controlled search
motion to probe the hole (see Fig. 6. To simulate stochastic
process noise, the engine block is moved on a linear axis by
a random offset at every iteration. SPI-DP ensures collision-
free motions from one hole to another and at the same
time optimizes program parameters such as target poses,
search patterns, velocities and contact forces with respect
to the task-level objectives of cycle time minimization and
maximization of the probability of task success.

20 trials are performed, for each of which the linear axis
was moved randomly by up to 4 mm and the robot program
was executed once with randomly initialized parameters, and
once with optimized parameters. The results are shown in
Table I. After optimization, the probability of finding each
of the three holes is increased by 83%, 67% and 186%,

TABLE I
EXPERIMENT VI-B: RESULTS

Hole found Duration (s)
unoptimized optimized unoptimized optimized

Hole 1 6 / 20 11 / 20 2.29 1.39
Hole 2 6 / 20 10 / 20 1.95 0.77
Hole 3 7 / 20 20 / 20 1.97 0.48

Fig. 6. Experiment VI-B: 3D rendering of the collision world and collision
free trajectory planned with SPI-DP (left) and real-world execution (right).

respectively. In addition, optimization improved the search
pattern, search dynamics and contact forces, reducing search
duration by 62%. At the same time, motion-level optimiza-
tion by dGPMP2-ND resulted in collision-free motions for
all evaluations. The noticeably better optimization results for
Hole 3 stem from its wider diameter and the greater surface
area surrounding it, compared to the other two holes.

VII. CONCLUSION AND OUTLOOK

We introduce Shadow Program Inversion with Differen-
tiable Planning (SPI-DP), a first-order robot program op-
timizer capable of jointly optimizing robot program pa-
rameters and motion trajectories. To that end, we present
dGPMP2-ND, a differentiable motion planner for n-DoF
robotic manipulators. SPI-DP integrates dGPMP2-ND into
a first-order general-purpose optimizer, which optimizes the
parameters of a given robot program with respect to task-
level objectives, while simultaneously ensuring that motion-
level constraints are respected. SPI-DP is evaluated on two
representative use cases from service and industrial robotics.
Both experiments show that SPI-DP enables the optimization
of program parameters such as target poses or search regions
while ensuring collision-freeness, smoothness and kinematic
feasibility. To our knowledge, SPI-DP is the first gradient-
based optimizer capable of jointly optimizing program pa-
rameters and motion trajectories for arbitrary parameterized
robot programs. Limitations of SPI-DP include its relative
sensitivity with respect to hyperparameters, particularly the
GP and collision factor covariances. We suggest the inves-
tigation of metaheuristics [47], [48] and meta-optimization
approaches [49]–[51] for future work, which reliably steer
the optimizer toward stable solutions or optimize planner
hyperparameters for efficient convergence. Moreover, we
seek to evaluate dGPMP2-ND on large-scale standardized
planning benchmarks and investigate its integration as a
differentiable planner for reinforcement learning [27]–[30]
and Task and Motion Planning [22], [52], [53].



REFERENCES

[1] H. H. Hoos, “Programming by optimization,” Communications of the
ACM, vol. 55, no. 2, pp. 70–80, Feb. 2012.

[2] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP:
Gradient optimization techniques for efficient motion planning,” in
ICRA, May 2009, pp. 489–494.

[3] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic Trajectory Optimization for Motion Planning,”
in 2011 IEEE International Conference on Robotics and Automation,
May 2011, pp. 4569–4574.

[4] T. Osa, “Multimodal trajectory optimization for motion planning,” The
International Journal of Robotics Research, vol. 39, no. 8, pp. 983–
1001, July 2020.

[5] A. Dastider, H. Fang, and M. Lin, “RETRO: Reactive Trajectory
Optimization for Real-Time Robot Motion Planning in Dynamic
Environments,” in 2024 IEEE International Conference on Robotics
and Automation (ICRA), May 2024, pp. 8764–8770.

[6] M. Racca, V. Kyrki, and M. Cakmak, “Interactive Tuning of Robot
Program Parameters via Expected Divergence Maximization,” in Pro-
ceedings of the 2020 ACM/IEEE International Conference on Human-
Robot Interaction, ser. HRI ’20. New York, NY, USA: Association
for Computing Machinery, Mar. 2020, pp. 629–638.

[7] B. Alt, D. Katic, R. Jäkel, A. K. Bozcuoglu, and M. Beetz, “Robot
Program Parameter Inference via Differentiable Shadow Program
Inversion,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA), May 2021, pp. 4672–4678.

[8] F. Berkenkamp, A. Krause, and A. P. Schoellig, “Bayesian optimiza-
tion with safety constraints: Safe and automatic parameter tuning in
robotics,” Machine Learning, vol. 112, no. 10, pp. 3713–3747, Oct.
2023.

[9] N. Kumar, T. Silver, W. McClinton, L. Zhao, S. Proulx, T. Lozano-
Pérez, L. P. Kaelbling, and J. Barry, “Practice Makes Perfect: Planning
to Learn Skill Parameter Policies,” May 2024.

[10] J. A. Marvel, W. S. Newman, D. P. Gravel, G. Zhang, Jianjun Wang,
and T. Fuhlbrigge, “Automated learning for parameter optimization
of robotic assembly tasks utilizing genetic algorithms,” in 2008 IEEE
International Conference on Robotics and Biomimetics, Feb. 2009, pp.
179–184.

[11] J. Kulk and J. S. Welsh, “Evaluation of walk optimisation techniques
for the NAO robot,” in 2011 11th IEEE-RAS International Conference
on Humanoid Robots, Oct. 2011, pp. 306–311.

[12] F. Wu, W. Weimer, M. Harman, Y. Jia, and J. Krinke, “Deep Parameter
Optimisation,” in Proceedings of the 2015 Annual Conference on
Genetic and Evolutionary Computation, ser. GECCO ’15. New
York, NY, USA: Association for Computing Machinery, July 2015,
pp. 1375–1382.

[13] B. R. Bruce, J. M. Aitken, and J. Petke, “Deep Parameter Optimisation
for Face Detection Using the Viola-Jones Algorithm in OpenCV,” in
Search Based Software Engineering, ser. Lecture Notes in Computer
Science, F. Sarro and K. Deb, Eds. Cham: Springer International
Publishing, 2016, pp. 238–243.

[14] J. Sohn, S. Lee, and S. Yoo, “Amortised Deep Parameter Optimisation
of GPGPU Work Group Size for OpenCV,” in Search Based Software
Engineering, ser. Lecture Notes in Computer Science, F. Sarro and
K. Deb, Eds. Cham: Springer International Publishing, 2016, pp.
211–217.

[15] R. Krohling, “Gaussian swarm: A novel particle swarm optimization
algorithm,” in IEEE Conference on Cybernetics and Intelligent Sys-
tems, 2004., vol. 1, Dec. 2004, pp. 372–376 vol.1.

[16] G. Bolet, G. Georgakoudis, K. Parasyris, K. W. Cameron, D. Beck-
ingsale, and T. Gamblin, “An Exploration of Global Optimization
Strategies for Autotuning OpenMP-based Codes,” in 2024 IEEE In-
ternational Parallel and Distributed Processing Symposium Workshops
(IPDPSW), May 2024, pp. 741–750.

[17] R. Calandra, A. Seyfarth, J. Peters, and M. P. Deisenroth, “Bayesian
optimization for learning gaits under uncertainty,” Annals of Mathe-
matics and Artificial Intelligence, vol. 76, no. 1, pp. 5–23, Feb. 2016.

[18] M. Mayr, F. Ahmad, K. Chatzilygeroudis, L. Nardi, and V. Krueger,
“Skill-based Multi-objective Reinforcement Learning of Indus-
trial Robot Tasks with Planning and Knowledge Integration,”
arXiv:2203.10033 [cs], Mar. 2022.

[19] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind,
“Automatic Differentiation in Machine Learning: A Survey,” Journal
of Machine Learning Research, vol. 18, no. 153, pp. 1–43, 2018.

[20] C. C. Margossian, “A Review of automatic differentiation and its effi-
cient implementation,” WIREs Data Mining and Knowledge Discovery,
vol. 9, no. 4, July 2019.

[21] M. Blondel and V. Roulet, “The Elements of Differentiable Program-
ming,” Mar. 2024.

[22] M. Toussaint, K. Allen, K. Smith, and J. Tenenbaum, “Differentiable
Physics and Stable Modes for Tool-Use and Manipulation Planning,”
in Robotics: Science and Systems XIV, vol. 14, June 2018.

[23] J. Degrave, M. Hermans, J. Dambre, and F. Wyffels, “A Differentiable
Physics Engine for Deep Learning in Robotics,” Frontiers in Neuro-
robotics, vol. 13, 2019.

[24] Y. Hu, L. Anderson, T.-M. Li, Q. Sun, N. Carr, J. Ragan-Kelley,
and F. Durand, “DiffTaichi: Differentiable Programming for Physical
Simulation,” in International Conference on Learning Representations,
Sept. 2019.

[25] Y.-L. Qiao, J. Liang, V. Koltun, and M. Lin, “Scalable Differentiable
Physics for Learning and Control,” in Proceedings of the 37th Inter-
national Conference on Machine Learning. PMLR, Nov. 2020, pp.
7847–7856.

[26] K. M. Jatavallabhula, M. Macklin, D. Fox, A. Garg, and F. Ramos,
“Bayesian Object Models for Robotic Interaction with Differentiable
Probabilistic Programming,” in Proceedings of The 6th Conference on
Robot Learning. PMLR, Mar. 2023, pp. 1563–1574.

[27] W. Wan, Y. Wang, Z. Erickson, and D. Held, “Differentiable Trajectory
Optimization as a Policy Class for Reinforcement and Imitation
Learning,” Oct. 2023.

[28] M. A. Z. Mora, M. Peychev, S. Ha, M. Vechev, and S. Coros, “PODS:
Policy Optimization via Differentiable Simulation,” in Proceedings of
the 38th International Conference on Machine Learning. PMLR, July
2021, pp. 7805–7817.

[29] P. Kolaric, D. K. Jha, A. U. Raghunathan, F. L. Lewis, M. Benos-
man, D. Romeres, and D. Nikovski, “Local Policy Optimization for
Trajectory-Centric Reinforcement Learning,” in 2020 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), May 2020,
pp. 5094–5100.

[30] L. Wang, Y. Zhang, D. Zhu, S. Coleman, and D. Kerr, “Supervised
Meta-Reinforcement Learning With Trajectory Optimization for Ma-
nipulation Tasks,” IEEE Transactions on Cognitive and Developmental
Systems, vol. 16, no. 2, pp. 681–691, Apr. 2024.

[31] T. A. Howell, S. Le Cleac’h, S. Singh, P. Florence, Z. Manchester,
and V. Sindhwani, “Trajectory Optimization with Optimization-Based
Dynamics,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp.
6750–6757, July 2022.

[32] T. A. Howell, K. Tracy, S. Le Cleac’h, and Z. Manchester, “CALIPSO:
A Differentiable Solver for Trajectory Optimization with Conic
and Complementarity Constraints,” in Robotics Research, A. Billard,
T. Asfour, and O. Khatib, Eds. Cham: Springer Nature Switzerland,
2023, pp. 504–521.

[33] M. Xu, T. L. Molloy, and S. Gould, “Revisiting Implicit Differenti-
ation for Learning Problems in Optimal Control,” in Thirty-Seventh
Conference on Neural Information Processing Systems, Nov. 2023.

[34] W. Jin, S. Mou, and G. J. Pappas, “Safe pontryagin differentiable
programming,” in Proceedings of the 35th International Conference
on Neural Information Processing Systems, ser. NIPS ’21. Red Hook,
NY, USA: Curran Associates Inc., June 2024, pp. 16 034–16 050.

[35] M. Mukadam, X. Yan, and B. Boots, “Gaussian Process Motion
planning,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA), May 2016, pp. 9–15.

[36] M. Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots, “Continuous-
Time Gaussian Process Motion Planning via Probabilistic Inference,”
The International Journal of Robotics Research, vol. 37, no. 11, pp.
1319–1340, Sept. 2018.

[37] M. Bhardwaj, B. Boots, and M. Mukadam, “Differentiable Gaussian
Process Motion Planning,” in arXiv:1907.09591 [Cs]. Paris: IEEE,
Mar. 2020.

[38] L. C. Cosier, R. Iordan, S. N. T. Zwane, G. Franzese, J. T. Wilson,
M. Deisenroth, A. Terenin, and Y. Bekiroglu, “A Unifying Variational
Framework for Gaussian Process Motion Planning,” in Proceedings
of The 27th International Conference on Artificial Intelligence and
Statistics. PMLR, Apr. 2024, pp. 1315–1323.

[39] B. Alt, D. Katic, R. Jäkel, and M. Beetz, “Heuristic-Free Optimization
of Force-Controlled Robot Search Strategies in Stochastic Environ-
ments,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Oct. 2022, pp. 8887–8893.



[40] C. Kienle, B. Alt, O. Celik, P. Becker, D. Katic, R. Jäkel, and
G. Neumann, “MuTT: A Multimodal Trajectory Transformer for
Robot Skills,” 2024.

[41] S. R. Schmidt-Rohr, R. Jäkel, and G. Dirschl, “ArtiMinds Robot
Programming Suite,” ArtiMinds Robotics GmbH, 2013.

[42] “Simulator for industrial robots and offline programming - RoboDK,”
https://robodk.com/, May 2020.

[43] W. T. White, “Introducing Intrinsic Flowstate,” May 2023.
[44] G. Sutanto, A. Wang, Y. Lin, M. Mukadam, G. Sukhatme, A. Rai, and

F. Meier, “Encoding Physical Constraints in Differentiable Newton-
Euler Algorithm,” in Proceedings of the 2nd Conference on Learning
for Dynamics and Control. PMLR, July 2020, pp. 804–813.

[45] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differen-
tiation in PyTorch,” Oct. 2017.

[46] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-
tion,” in 3rd International Conference for Learning Representations.
San Diego: arXiv, 2015.

[47] M. Gendreau and J.-Y. Potvin, Eds., Handbook of Metaheuristics, ser.
International Series in Operations Research & Management Science.
Boston, MA: Springer US, 2010, vol. 146.

[48] J. Swan, S. Adriaensen, A. E. I. Brownlee, K. Hammond, C. G.
Johnson, A. Kheiri, F. Krawiec, J. J. Merelo, L. L. Minku, E. Özcan,
G. L. Pappa, P. Garcı́a-Sánchez, K. Sörensen, S. Voß, M. Wagner, and
D. R. White, “Metaheuristics “In the Large”,” European Journal of
Operational Research, vol. 297, no. 2, pp. 393–406, Mar. 2022.

[49] X. Chen and E. Hazan, “Online Control for Meta-optimization,”
Advances in Neural Information Processing Systems, vol. 36, pp.
36 768–36 780, Dec. 2023.

[50] T. Gautam, S. Pfrommer, and S. Sojoudi, “Meta-Learning Parameter-
ized First-Order Optimizers Using Differentiable Convex Optimiza-
tion,” in 2023 62nd IEEE Conference on Decision and Control (CDC),
Dec. 2023, pp. 2284–2291.

[51] M. Feurer, J. Springenberg, and F. Hutter, “Initializing Bayesian
Hyperparameter Optimization via Meta-Learning,” Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 29, no. 1, Feb. 2015.

[52] J. Envall, R. Poranne, and S. Coros, “Differentiable Task Assignment
and Motion Planning,” in 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Oct. 2023, pp. 2049–2056.

[53] Y. Lee, P. Huang, K. M. Jatavallabhula, A. Z. Li, F. Damken,
E. Heiden, K. Smith, D. Nowrouzezahrai, F. Ramos, and F. Shkurti,
“STAMP: Differentiable Task and Motion Planning via Stein Varia-
tional Gradient Descent,” Jan. 2024.


	Introduction
	Related Work
	Robot program parameter optimization
	Trajectory optimization


	Shadow Program Inversion: A Primer
	Differentiable Shadow Programs
	Robot Program Parameter Optimization
	Joint Parameter and Trajectory Optimization

	DGPMP2-ND: Differentiable Motion Planning for N-DoF Manipulators
	Differentiable Gaussian Motion Planning
	Differentiable N-DoF Collision Factor
	Joint Limit Factor
	Demonstration prior

	Joint Trajectory and Parameter Optimization
	Shadow Program Inversion with Differentiable Planning
	Task-Level Objective Functions

	Experiments
	Household Pick-and-Place with Human Demonstration
	Cup Pick-and-Place
	Wine Glass Pick-and-Place with Target Pose Optimization

	Engine Block Poka-Yoke Testing with Force Control

	Conclusion and Outlook
	References

