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Abstract— We envision a future in which autonomous robots
conduct scientific experiments in ways that are not only precise
and repeatable, but also open, trustworthy, and transparent. To
realize this vision, we present two key contributions: a semantic
execution tracing framework that logs sensor data together
with semantically annotated robot belief states, ensuring that
automated experimentation is transparent and replicable; and
the AICOR Virtual Research Building (VRB), a cloud-based
platform for sharing, replicating, and validating robot task
executions at scale. Together, these tools enable reproducible,
robot-driven science by integrating deterministic execution, se-
mantic memory, and open knowledge representation, laying the
foundation for autonomous systems to participate in scientific
discovery.

I. INTRODUCTION

The reproducibility crisis has emerged as a pressing chal-
lenge facing contemporary scientific research across disci-
plines [1]. Studies demonstrate that a substantial fraction of
published results in the social, medical, natural, and engi-
neering sciences cannot be replicated, undermining scientific
inquiry and eroding trust in science [2]. Open science, the
practice of sharing experimental protocols, code, data, tools,
results and publications without barriers, has been identified
as promising avenue toward addressing the reproducibility
crisis and ensuring equitable, trustworthy scientific progress
[3].

We propose that integrating robots into scientific discovery
processes not only accelerates research but fundamentally
enhances the reproducibility and scientific rigor of exper-
imental results and, if combined with findable, accessi-
ble, interoperable and reusable (FAIR) data principles and
open computational infrastructure, can substantially boost
the transformation toward open science. This transforma-
tion occurs through three key mechanisms. First, robots
executing predefined protocols eliminate experimenter bias
through mechanical repeatability and consistency, facilitating
constant procedural conditions across trials. Second, robot
code makes the operationalization of protocols transparent by
providing computational implementations that can be prereg-
istered and shared as supplementary materials, documenting
exactly how protocols translate into concrete physical ac-
tions. Third, robots can generate comprehensive execution
traces that provide ground-truth evidence of procedural rigor
and the validity of results.
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We present two key contributions toward enabling repro-
ducible, robot-assisted scientific inquiry. The first is a seman-
tic execution tracing framework which is a novel integration
of low-level sensor logging, semantic scene annotations, and
narrative reasoning traces in a single, unified data model.
Unlike existing logging frameworks, ours captures why ac-
tions were taken, how perception decisions were made, and
what the robot believed at each point during task execution.

Our second contribution is the AICOR Virtual Research
Building ( VRB the first cloud platform that links con-
tainerized, deterministic robot simulations with semantically
annotated execution traces. The VRB provides open access
to code, simulation environments, and data, enabling re-
searchers worldwide to inspect, reproduce, and build upon
each other’s work.

These contributions form a foundation for the future devel-
opment of autonomous robotic systems that can participate
in scientific workflows. This work advances the long-term
vision of open, traceable, and robot-supported science.

II. RELATED WORK
A. Robots for Scientific Discovery

Sparkes et al. define a “Robot Scientist” as a closed-loop
system which “generates hypotheses from a computer model
of the domain, designs experiments to test these hypotheses,
runs the physical experiments using robotic systems, analyses
and interprets the resulting data, and repeats the cycle”
[4]. Such automatic, robot-enabled systems for accelerated
scientific discovery have been proposed for a variety of
domains such as genomics research [4], pharmaceutical drug
discovery [5], multicomponent chemical formulation [6] and
materials science [7]. While increasingly capable of end-to-
end hypothesis generation, experimentation and evaluation,
state-of-the-art robot scientist systems remain domain- and
use case-specific. Truly autonomous, generalist scientists re-
quire both highly generalizable cognitive abilities and multi-
purpose, highly flexible embodiments to perform scientific
experiments in a variety of real-world contexts [8]. In doing
so, robot scientists may, in fact, overcome several inherent
limitations of human scientists [9]. One potential advantage
is that robot scientists can make their cognitive processes
explicit during experimentation, producing documentation
that not only describes the states of the world during the
experiment, but also the internal belief states of the experi-
menter. Coruhlu et al. [10] developed a plan execution mon-
itoring framework under partial observability that combines
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prediction, diagnosis, and explanation to enable autonomous
self-checking.

The CRAM cognitive architecture [11], [12] uses a se-
mantic world model as the core representation for robot
belief states, forming the basis for planning, reasoning and
testing hypotheses about robot actions and world states.
Narrative Enabled Episodic Memories (NEEMs) [13] persist
robot belief states together with sensory percepts across robot
actions. TraceBo tightly coupled a semantic digital twin
with the robot’s perception and plan executives, enabling the
generation of comprehensive audit trails for pharmaceutical
R&D workflows [14].

B. Open Robotic Experimentation and Data Infrastructure

Reproducibility in science hinges not only on rerunning
code but on the faithful reconstruction of experimental
conditions, data structures, and execution contexts. To ad-
dress these challenges, containerization technologies have
emerged as a foundation for computational reproducibility
[15]. Tools such as repo2docker [16] and BinderHub [17]
allow researchers to declaratively define software environ-
ments via Git repositories. These platforms automatically
generate Docker images that encapsulate all dependencies,
configurations, and scripts, enabling reproducible execution
across diverse hardware setups.

Beyond executable environments, reproducibility also re-
quires capturing and sharing scientific data with sufficient
provenance and structure. The FAIR principles advocate
for metadata-rich, machine-actionable data that supports
long-term reuse [18]. Platforms like LiveDocs [19] extend
this vision by allowing users to inspect and re-run code
that generates scientific figures and results, and lower the
barrier to reproducing and modifying scientific analyses.
Similarly, MyBinder [20] supports browser-based execution
of Jupyter notebooks directly from Git repositories, fa-
cilitating widespread dissemination of executable research.
Cloud robotics frameworks like Rapyuta [21] provide secure,
scalable environments for offloading robot computation to
the cloud, enabling teams of robots to coordinate via shared
knowledge repositories. However, these systems typically
lack support for semantically structured data or fine-grained
tracking of provenance. We propose to combine code access,
simulation, and data access into one digital platform for
reproducible robot-enabled experimentation.

ITII. A SEMANTIC EXECUTION TRACING
FRAMEWORK FOR ROBOT TASKS

To address the fundamental challenge of generating com-
prehensive and interpretable execution traces for robot task
executions, we present a semantic execution tracing frame-
work that integrates three complementary technologies devel-
oped in the TraceBot project. This framework automatically
captures not only low-level sensor data and robot commands,
but also the high-level reasoning processes, perceptual inter-
pretations and verification steps that occur during procedural
execution.

Zhttps://www.tracebot .eu/

The semantic execution tracing framework operates
through three interconnected layers that collectively provide
multi-modal documentation of robot task executions (see

[Figure 1),

A. Layer 1: Adaptive Perception with Semantic Annotation

The foundational layer employs the RoboKudo [24] per-
ception framework, which models perception processes as
Perception Pipeline Trees (PPTs) based on behavior tree
semantics. Unlike monolithic perception systems, PPTs dy-
namically combine computer vision methods according to
procedural requirements while maintaining complete trace-
ability of perceptual decisions. Each PPT consists of anno-
tator nodes that represent individual vision methods (object
detection, pose estimation, feature extraction) and control-
flow nodes that orchestrate their execution. Annotators ex-
change information through a Common Analysis Structure
(CAS) that accumulates semantic annotations throughout
the perception process. This architecture enables the system
to generate detailed traces documenting which perception
methods were invoked, in what sequence, and with what
intermediate results. The framework captures multiple types
of semantic information during perception:

1) Object hypotheses with confidence scores and classi-
fication rationales; 2) spatial relationships between detected
entities with uncertainty estimates; 3) temporal sequences
of perception events and their causal dependencies; and
4) method selection justifications explaining why specific
algorithms were chosen for given contexts.

For example, when detecting objects, the system docu-
ments not only the final detection results but also the cascade
of perception methods attempted, the reasons for method
selection, and the (low) confidence estimates that led to
the selection of alternative perception methods. We hypoth-
esize that interpretable logs of both perception results and
metacognitive decisions about perception algorithms may
increase trust in the cognitive system, particularly for hard
and ambiguous perception problems such as the detection
and classification of transparent objects.

B. Layer 2: Imagination-Enabled Cognitive Traces

The second layer integrates imagination-enabled percep-
tion capabilities that allow robots to generate and test hy-
potheses about the outcomes of their own task executions.
This process is supported by high-fidelity simulations of
semantic digital twins that mirror real-world laboratory envi-
ronments, enriched with detailed object models and physics-
based dynamics [23].

The process cycles through several stages:

Hypothesis Generation: Before executing actions, the
system simulates anticipated outcomes in the digital twin
environment.

Action Synchronization: Robot movements and manipu-
lations are replicated in real-time within the semantic digital
twin.

Outcome Comparison: Post-action observations are com-
pared against simulated predictions using both pixel-level
and semantic similarity metrics.
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Fig. 1: The TraceBot framework leverages a semantics-aware perception engine [22], a semantic digital twin simulation and
prospection framework [23] and an imagination-enabled semantic verification system [14] to generate audit trails of robot

actions, here for sterility testing.

Discrepancy Analysis: When mismatches occur, the sys-
tem generates detailed explanations of the differences and
their potential causes.

This layer produces cognitive traces that document the
robot’s reasoning about anticipated outcomes of the task
executions [14]. Cognitive traces are records of a robot’s
internal reasoning processes, such as hypotheses, predictions,
decision-making steps, and causal explanations generated
during task execution. They include visual comparisons
between expected and actual results, explanations for task
success or failure, and detailed analyses of object inter-
actions during manipulation tasks. This process of cogni-
tive emulation is realized through the NaivPhys4RP frame-
work [23], which enables robots to reason about task execu-
tion contexts using commonsense knowledge about causality,
physics, and object relationships. Commonsense knowledge
in this context refers to structured, task-relevant knowledge
about causal and physical properties of objects and actions
(as axiomatized in the SOMA ontology [25] and derived,
application-specific ontologies). Rules, such as “containers
must be open before pouring” guide causal reasoning and
interpretation of outcomes. The cognitive emulation process
involves:

Context Understanding: Task execution protocols are
converted into socio-physical knowledge graphs that cap-
ture object relationships, spatial configurations, and action
sequences.

Narrative Processing: Task descriptions are interpreted
through an Abstract Context Description Language (ACDL)
that grounds natural-language instructions in domain ontolo-
gies.

Causal Reasoning: Explanations for observed phenomena
are generated based on physics simulation and commonsense
knowledge about object behaviors.

Ontological Grounding: Observations during task execu-

tion are linked to structured knowledge representations that
enable semantic queries and automated analysis.

The resulting execution traces include narrative descrip-
tions of task execution steps, causal explanations for ob-
served outcomes, and explicit documentation of the knowl-
edge and assumptions underlying robot decision-making.

C. Layer 3: Context-Adaptive Verification, Recovery and
Audit

The flexibility afforded by robots enables the automation
of increasingly complex procedures in increasingly unstruc-
tured environments, but also introduces novel, hard-to-detect
ways in which task executions can fail. To ensure the
integrity of the procedures, we introduced RobAuditor [26]
(see Figure [2), a plugin-like framework for context-aware
and -adaptive task verification planning and execution, failure
recovery, and audit trail generation.

Workflow. The RobAuditor workflow is illustrated in
Figure [2] For plugging RobAuditor into the robot, a formal
query-based language is provided for their interactions. (1)
The tracer presented in Layer 1 and Layer 2 makes use
of the interface to send execution traces to RobAuditor, (2)
then RobAuditor interprets these traces into a comprehensive
story, grounded in an established ontology (SOMA [25])
and persistently stored as NEEMs of the robot activities.
(3) Any time (online/offline), a task verification query is
issued, (4) RobAuditor’s metareasoner will access the context
(NEEMs+SOMA+DT) of the task, (5) then generate based
on the context a distributed verification pipeline, made out
of reasoning units called verifiers (competence domains and
implementations defined in SOMA), (6) which will then
be executed in a distributed manner. (7) As the pipeline
executes, reasoning units can make use of RobAuditor’s
interface to access the context (e.g., what is the diameter
of the object?). (8) RobAuditor’s metareasoner synthesizes
the final verification result from all reasoning units with



5) Generation

RobAuditor as Plugin

o
Distributed

S » ek B & Onus Sani o~ O &

Cloud- and Web-Based TRACEBOT NEEM

Decision 7) merging ‘ verifier 1 ‘ | verifier k ‘ verification
Confidence results plan
Explanation - | verifier | ‘ ‘ verifier n ‘
Recovery
Distributed Execution
v— 6)

o= context
data

8) audit trail Narrative-Enabled Episodic

Memories (NEEMs)

4) action

Contexuj r 2) interpretation

SruEnE of executions

Mental i Soci ysical
(Digital Twin) Model of Traceable
Activities

3) verify Action;

%

(Meta)Reasoning

1) executions

Fig. 2: RobAuditor: Context-adaptive task verification, re-
covery and audit [26].

(potentially) a recovery plan in case of failure. Note that
each reasoning unit as well as the metareasoner returns
for this verification a quadruplet (D, Cy, Eq, E,), denoting
a boolean verification decision, a decision confidence, a
decision explanation, and possibly a recovery plan (SOMA
abstractly categorizes failures and defines corresponding re-
covery strategies), respectively. Eventually, the audit trail is
generated as a concise documentation of the robot activities.
We refer to [26] for a detailed overview and evaluation of
the TraceBot framework on a sterility testing usecase [27].

D. Discussion

This semantics- and simulation-driven approach to exe-
cution tracing provides several methodological advantages
for reproducible robot science. The framework generates
complete documentation of robot reasoning processes, elim-
inating the black-box problem that many automated systems
suffer from. Beyond documentation, semantic and cognitive
traces allow researchers to understand not just what the robot
did, but why it made specific decisions and how it arrived
at execution outcomes. In future work, we are investigating
imagination-enabled traces for automated formal verification
of task execution, enabling detection of protocol deviations
or unexpected outcomes in real time.

The modular architecture allows the framework to be ex-
tended with new perception methods, reasoning capabilities,
or domain-specific knowledge without requiring complete
system redesign. Consequently, it can accommodate task
executions of varying complexity, from simple manipulation
tasks to multi-step protocols involving complex object in-
teractions. Through this integrated approach, the semantic
execution tracing framework enables a new level of task-level
documentation that supports both immediate reproducibility
and long-term scientific analysis of robot-executed proce-

Fig. 3: Replaying NEEMs in the VRBH

dures. All system components are available open—sourcﬂﬂ
and exemplary execution traces can be replayed and exam-

ined in the VRB (see [Figure 3).

IV. VIRTUAL ROBOT LABORATORIES FOR OPEN,
REPRODUCIBLE SCIENCE

The VRB|Z| provides a cloud-based infrastructure for host-
ing virtual laboratories that encapsulate complete procedu-
ral setups, enabling bit-level reproducibility and facilitating
collaborative, robot-based experiments across the global re-
search community.

A. Containerized Architecture for Computational Repro-
ducibility

The VRB implements reproducibility through a multi-
layered containerization architecture utilizing Docker con-
tainers. Each virtual laboratory instantiates as an isolated
container embedding the complete CRAM 2.0 cognitive
robotics software stack [11], including ROS, the Multiverse
multi-backend simulation environment [28], the PyCRAM
robot programming language [29], the KnowRob robot
knowledge representation and reasoning engine [13], as well
as any optional domain-specific software. Container images
are constructed from version-controlled Dockerfiles stored in
Git repositories, ensuring precise specification of software
dependencies, library versions, and system configurations.

The platform leverages BinderHub [17] for automated con-
tainer image construction and deployment. When researchers
commit code to public Git repositories, BinderHub automat-
ically rebuilds Docker images incorporating all dependen-
cies specified in the repository’s Dockerfile. This process
generates immutable container images with cryptographic
hashes, providing verifiable computational environments for
execution. The resulting containers execute identically across
heterogeneous hardware platforms, eliminating variability
introduced by different operating systems, library versions,
or hardware configurations.

3https://gitlab.com/tracebot
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Fig. 4: The VRB offers a wide range of existing laboratories
to explore, enabling users worldwide to access open-source
code and data from open cloud repositories. Its collaborative
approach supports key aspects of open science, such as the
reproducibility of robot task executions.

Importantly, the VRB’s Docker container images are not
solely accessible via the platform’s web interface but can
also be downloaded for local deployment. This enables
researchers to instantiate fully interactive, high-fidelity VR
simulations and high-performance cognitive robotics simula-
tion on their own computational infrastructure. Local execu-
tion facilitates resource-intensive workloads and immersive
user interaction while preserving the fidelity and repro-
ducibility of the experiment setup, thus affording maximum
flexibility for offline analysis, customized parameter tuning,
and integration within heterogeneous research environments.

Local VRB deployments can take advantage of the Mul-
tiverse [28] simulation framework, which provides a unified
interface to multiple simulation engines including MuJoCo
[30], Bullet Physics [31], NVIDIA Isaac Sim, and Gazebo
[32]. Each simulation backend exhibits different determin-
istic properties: MuJoCo provides deterministic forward dy-
namics for continuous control tasks, Bullet Physics offers
deterministic rigid body dynamics with configurable solver
parameters, and Gazebo implements deterministic discrete-
time simulation with controllable integration schemes. Re-
searchers select simulation backends based on their specific
performance and determinism requirements, with Multiverse
ensuring consistent Universal Scene Description (USD) data
structures across different simulators [33].

B. Data Provenance and Episodic Memory Architecture

The VRB integrates with NEEMHub [34], a distributed
knowledge service implementing the NEEM data model for
comprehensive, semantically rich execution traces. NEEMs
capture complete episodes as timestamped MongoDB doc-
uments containing multimodal sensor data, robot state tra-
jectories, environmental object configurations, and seman-
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Fig. 5: The VRB deploys virtual laboratories as sandboxed,
individually deployable Docker containers. The pre-installed
robotics software stack can be extended by arbitrary addi-
tional domain- or application specific software.

tic event annotations. The temporal structure of NEEMs
enables precise reconstruction of procedural timelines with
microsecond-level timestamp resolution.

The NEEM data model implements a three-layer archi-
tecture: raw sensor data streams, symbolic state representa-
tions, and semantic annotations. Raw data includes RGB-
D camera feeds, joint position encoders and force-torque
sensor readings. Symbolic representations encode discrete
state transitions including object poses, robot configurations,
and task execution states in terms of the SOMA ontology
[25]. Semantic annotations provide high-level descriptions of
procedural events, task goals, and outcome assessments using
standardized knowledge representation languages including
OWL and SWRL.

The NEEMHub uses content-addressable storage (crypto-
graphic hashes) of NEEM documents to ensure reproducibil-
ity and trust in stored task executions, ensuring any change in
data is detectable. This guarantees that execution traces are
immutable and verifiable, which is essential when procedures
are replicated across different sites or over long time periods.
To improve usability, we extended the previous Prolog-
based query interface with a Python-native solution using
the PyCRAM framework [29]. This new approach integrates
a Pythonic Object-Relational Mapping (ORM) layer for
querying the MongoDB backend, significantly lowering the
entry barrier for users unfamiliar with logic programming.
Additionally, the framework now automatically logs all robot
actions, belief states and object interactions to enable track-
ing, debugging, and reproducibility.

The temporal fidelity of NEEM replay is maintained
through MongoDB’s timestamp ordering and the platform’s
deterministic event scheduling mechanisms.

C. Deterministic Execution and Validation Mechanisms

The reproducibility of robot actions in the VRB de-
pends on the deterministic properties of the underlying
software components. The Giskard motion planner [35]



implements deterministic trajectory optimization using se-
quential quadratic programming with fixed random seeds,
ensuring identical motion plans for identical initial conditions
and constraints. The PYCRAM plan executive [29] provides
deterministic task execution through symbolic planning al-
gorithms with reproducible search strategies and tie-breaking
rules.

Recorded NEEMs contain a serialized timeline of the
robot’s belief state alongside sensor data and action histories,
enabling precise replay of past task executions (see Figure 3).
This allows researchers not only to replicate robot behavior
exactly as it occurred, but also to inspect and modify spe-
cific aspects of the execution for comparative or diagnostic
analysis. By preserving the full internal and external context
of the robot’s execution, the platform supports rigorous post
hoc validation, traceability, and reasoning over autonomous
decision-making processes.

The VRB implements semantic validation mechanisms
through automated comparison of NEEM episodes by com-
paring their structured, meaning-based (semantic) represen-
tations (e.g. ontological task descriptions) against expected
or reference models. High-level task outcomes are validated
by comparing semantic annotations between original and
reproduced task executions using graph isomorphism algo-
rithms applied to task execution trees. This approach enables
validation of task execution reproducibility even when low-
level robot motions exhibit minor variations due to numerical
precision limitations or simulator differences.

D. Knowledge Representation and Domain-Specific Valida-
tion

The VRB’s knowledge representation framework enables
domain-specific validation criteria through extensible on-
tology systems. The SOMA ontology provides core con-
cepts for robotic manipulation tasks, while researchers can
integrate domain-specific ontologies for specialized exper-
imental validation [25]. For materials science procedures,
researchers might implement ontologies describing crystal
structures and phase transitions. For biological research,
specialized ontologies could encode protein folding states
and molecular interactions. Semantic rule engines imple-
mented in the Semantic Web Rule Language (SWRL) enable
automated quality assessment of data. Rules can specify
validity conditions such as “successful grasping requires
contact forces exceeding threshold values” or ‘“navigation
tasks must maintain minimum clearance distances from
obstacles.” These rules execute automatically during task
execution, providing quantitative assessments of data quality
and task success criteria. Actionable Knowledge Graphs
(AKGs) extend the utility of knowledge representation by
linking object knowledge to both environment and action
knowledge in a way that supports decision-making and
automated behavior across various agents [36]. For instance,
a product knowledge graph supports omni-channel shop-
ping assistance by integrating product data with contextual
and spatial information, accessible by smartphones, smart
glasses, or robots [37]. Similarly, a food cutting knowledge

graph allows robots to autonomously perform variations of
cutting tasks by incorporating object affordances and web-
acquired procedural knowledge [38]. These AKGs empower
systems to reason over task-relevant knowledge and execute
context-appropriate actions, demonstrating the integration of
semantic representation with real-world functionality.

The knowledge representation system supports logical
reasoning over data using description logic inference engines.
Researchers can formulate hypotheses as logical queries over
NEEM databases, enabling systematic testing of scientific
hypotheses across large datasets. This capability supports
meta-analyses and systematic reviews that would be com-
putationally intractable with traditional approaches.

E. Procedure Sandboxing and Parallel Execution

The VRB upholds principles of transparent collaboration
and reproducibility. Lab maintainers are tasked with ensuring
that all code is systematically committed to version control
systems such as Git, which supports traceability and ac-
countability. While operators can interactively modify and
test code within the lab environment, these changes remain
transient. Any permanent modifications to configurations or
protocols must be formally committed and managed through
version control.

The platform supports robustness and flexibility through
strong procedure sandboxing. Each task execution runs in its
own isolated container, ensuring that changes made by one
user do not affect others’ ongoing work. This isolation facili-
tates safe experimentation and reproducibility, allowing users
to modify or extend procedures without fear of unintended
side effects. The platform implements fault tolerance through
Kubernetes’ self-healing mechanisms, automatically restart-
ing failed containers and rescheduling virtual laboratories
on healthy compute nodes. Persistent volumes ensure data
survival across container failures, while distributed storage
systems provide data redundancy and high availability.

F. Discussion

1) Limitations and Numerical Considerations: The
VRB’s reproducibility guarantees are subject to several
technical limitations. Floating-point arithmetic in physics
simulators can exhibit platform-dependent behavior due to
differences in CPU architectures, compiler optimizations,
and mathematical library implementations. While IEEE 754
floating-point standards provide consistency within specific
hardware platforms, cross-platform reproducibility may re-
quire additional validation. Non-deterministic algorithms in-
cluding certain machine learning methods, genetic algo-
rithms, and simulated annealing procedures require careful
treatment to achieve reproducibility. The platform provides
facilities for deterministic pseudo-random number genera-
tion, but researchers must explicitly manage randomness
sources within their code. Real-time constraints in robotic
systems can introduce timing-dependent behavior that affects
task execution outcomes. The VRB addresses this through
deterministic simulation scheduling and configurable time
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step control, but researchers must validate that their task
executions are robust to small timing variations.

2) Implications for Computational Scientific Discovery:
The VRB’s virtual laboratory infrastructure enables new
paradigms for computational validation in robotics-assisted
scientific discovery. The platform’s ability to capture, ver-
sion, and replay complete episodes creates opportunities
for systematic reproducibility studies, large-scale param-
eter sweeps, and collaborative validation across research
institutions. This infrastructure supports the development
of more rigorous scientific methodologies for procedures
involving complex robotic systems and autonomous agents.
The platform’s integration of symbolic knowledge represen-
tation with low-level sensor data enables novel approaches to
scientific hypothesis testing and discovery. Researchers can
formulate scientific hypotheses as logical queries over large
NEEM databases, testing theoretical predictions against em-
pirical observations collected from robotic task executions.
This capability bridges the gap between theoretical model-
ing and empirical validation in scientific research involving
embodied Al systems.

V. CONCLUSION

We presented a framework and infrastructure for enabling
open, reproducible, and trustworthy robot-based research
through semantic execution tracing and virtual laboratories.
Our semantic execution tracing framework captures not
only raw sensor and control data but also interpretable
and structured representations of robot perception, beliefs,
and reasoning processes. This multi-layered traceability goes
beyond traditional logging and supports deep insight into
robot behavior, facilitating transparent, repeatable robotic
task procedures.

Building on this foundation, the VRB provides a cloud-
based platform for deploying, sharing, and replicating robotic
task executions at scale. By combining containerized envi-
ronments, deterministic simulation, structured data storage,
semantically annotated task records, and ontological valida-
tion, the VRB addresses critical barriers to reproducibility in
robotics-driven research. It aligns with the FAIR principles
and supports transparent evaluation, domain-specific vali-
dation, and collaborative reuse through its integration with
knowledge representation and episodic memory structures.

We have implemented and demonstrated a reproducibility
pipeline that combines deterministic robotic execution, se-
mantic and cognitive trace logging and cloud-based sharing
through the VRB. This allows researchers to reproduce not
only the outcome of a task execution but analyze the internal
decision making of the robot. We believe this addresses
addresses a critical gap in reproducible robotics and provides
a practical foundation for open, trustworthy, robot-enabled
science.
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