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Rainer Jäkel4 and Rania Rayyes3

Abstract— Despite the widespread adoption of industrial
robots in automotive assembly, wire harness installation re-
mains a largely manual process, as it requires precise and flex-
ible manipulation. To address this challenge, we design a novel
AI-based framework that automates cable connector mating by
integrating force control with deep visuotactile learning. Our
system optimizes search-and-insertion strategies using first-
order optimization over a multimodal transformer architecture
trained on visual, tactile, and proprioceptive data. Additionally,
we design a novel automated data collection and optimization
pipeline that minimizes the need for machine learning expertise.
The framework optimizes robot programs that run natively on
standard industrial controllers, permitting human experts to
audit and certify them. Experimental validations on a center
console assembly task demonstrate significant improvements
in cycle times and robustness compared to conventional robot
programming approaches. Videos are available under https:
//claudius-kienle.github.io/AppMuTT.

I. INTRODUCTION

Industrial robots have been central to the automation of
assembly tasks in the automotive industry for several decades
[1]. Recent advances in sensor and actor technologies such
as cost-effective force-torque sensors and 3D cameras have
facilitated software- and data-driven automation, enabling
the use of robots in increasingly dynamic, flexible assembly
applications [2]. Despite these advances, the installation of
wire harnesses has remained largely confined to manual labor
and expensive, specialized mechanical engineering solutions
[3]. This is largely due to the process variances induced
by the flexibility of cables, the wide range of product
variants, and strict process requirements with respect to cycle
time and robustness [4]. As modern automobiles incorporate
more connected sensors and actuators, partly driven by the
demands of autonomous driving, the number and complexity
of wire harnesses are rapidly increasing. As a result, wire
harness installation is becoming a greater bottleneck and cost
factor in the automotive value chain [4].

One of the final steps in wire harness installation in
automobiles is the mating of the cable connectors [5]. This
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Fig. 1. Robotic mating of electrical connectors in a center console: Using
our learned, neural model of the search-and-insertion strategy, the search
pattern (bottom left, red) is optimized (green) to ensure robust installation
with minimal temporal overhead.

installation step poses considerable challenges for robotic
automation, as it requires handling a large variety of con-
nector geometries [4] and accessing sockets located in the
drivetrain, center console, dashboard, and other areas that
are hard to reach for 6-degree of freedom (DoF) robot arms
[6]. Moreover, the pre-positioning of the wire harness and
installation targets is subject to stochastic variances on the
order of several millimeters [3]. State-of-the-art techniques
for robotic connector mating use force-controlled or vision-
based search and insertion, inherently facing a tradeoff
between robustness and execution time.

To address this challenge, we propose a novel framework
for the automated mating of wire harness cable connectors,
combining advanced machine learning techniques [7] with
a streamlined, automation-friendly process [8]. It leverages
multimodal visuotactile learning and force control to opti-
mize the connector insertion strategy, enhancing both ef-
ficiency and robustness. At the core of our framework is
a Multimodal Trajectory Transformer (MuTT) [7], trained
on visual, tactile, and proprioceptive data to capture the
stochastic characteristics of the insertion process. By apply-
ing MuTT as a predictor in a model-based optimizer [9], we
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enable the system to adapt its search-and-insertion strategy,
leading to improved cycle times and insertion success rates.
Our AI-based framework is complemented by a fully auto-
mated pipeline for data collection, training, and optimization,
minimizing the need for human intervention and making the
system accessible to non-experts in AI.

We validate our framework in real-world experiments on
installing a wire harness into a center console, and evaluate
its performance across five connector types with different ge-
ometries. Search optimization results in updated parameters
on the robot controller, ensuring that the resulting search
strategy remains interpretable, auditable, and certifiable by
industry professionals.

II. RELATED WORK

A. Robotic Wire Harness Installation

Wire harness installation features several challenging per-
ception and manipulation problems, such as the accurate
perception of the position and state of deformation of the
harness [10], [11], [3], [12], robust grasping of the wires
or connectors [13], [14], [15], outlaying and fixing of the
harness in the chassis [16], [6], [17] and mating of the
electrical connectors [5], [18], [19]. This paper focuses on the
latter task of connector insertion, which remains a manual
process in the industrial state of the art [12]. Researchers
have proposed several approaches for robotic connector
mating, most of which use a combination of visual and force
feedback. Sun et al. [19] propose to measure the tilt angle and
displacement of the grasped connector with two 2D cameras
and use a force- and torque-controlled search and insertion
strategy to mate the connector with the socket. Di et al.
[18] propose a hybrid force-vision control strategy for online
motion control. Yumbla et al. [5] propose a gripper design
that allows grasping the cable so that the connector is aligned
and firmly arrested, considerably reducing the uncertainty
induced by imprecise grasping.

Our framework improves upon previous methods for force
and vision-controlled connector mating [19], [20] by intro-
ducing a gripper-friendly connector design (cf. Fig. 5) and an
optimization approach that tailors the search strategy to the
stochastic variance of the insertion process and the specific
characteristics of the current environment. By learning the
environment distribution with MuTT and adapting the search
accordingly, our method minimizes unnecessary exploration,
reducing search overhead while enhancing the robustness and
efficiency of the mating process.

B. Data-Driven Robot Program Optimization

Force-controlled search and insertion strategies compen-
sate for sources of process noise, such as elastic deforma-
tion of the socket, that are difficult to detect via purely
vision-based approaches. Force-controlled search and careful
moment-free insertion trade off robustness for time. Data-
driven methods permit to optimize search and insertion
strategies to minimize additional search overhead. While
a variety of general-purpose robot program optimization

approaches have been proposed [21], [22], [23], [24], model-
based parameter optimization has emerged as a promising
approach for peg-in-hole assembly problems, as it avoids trial
and error at runtime in favor of optimizing over a learned
model of the process [25]. In prior work, we introduced
Shadow Program Inversion (SPI), a first-order parameter
optimizer operating on a differentiable, partially learned
model of a robot program [9], [26]. Related approaches have
applied optimization by gradient descent over differentiable
programs to optimize motion controller parameters [27],
[28], [29], [30].

SPI has been applied to peg-in-hole electronics assembly
[26], but without conditioning on the current environment,
limiting optimization to process variance alone. In prior work
[7], we extended SPI with MuTT to enable environment-
conditioned optimization of the search strategy, demonstrat-
ing its effectiveness in a controlled laboratory peg-in-hole as-
sembly experiment. However, in that setting, the process was
comparatively robust to small-scale variance, permitting the
system to infer the connector’s position primarily from visual
information. As a result, the search strategy optimization was
dominated by the adaptation to the current environment and
the optimization for process variance was less significant.

In contrast, connector mating for wire harness installation
presents a more fine-grained challenge. Sub-millimeter toler-
ances cause the process to be sensitive to variances below the
resolution of vision sensors. In this work, we present the first
application of MuTT [7] with SPI [26] for high-precision
robot tasks, demonstrating its ability to optimize search
strategies that account for both the observed environment
and process variance in the real world. It enables search
strategy optimization to sub-millimeter precision, ensuring
more efficient and reliable mating, even in scenarios where
vision data alone cannot fully capture process variations.

III. AI-BASED FRAMEWORK FOR AUTOMATED
CONNECTOR MATING

Our framework is shown in Fig. 2. The process consists
of three main stages: robot programming, learning, and opti-
mization. Initially, an engineer creates a robot program using
standard robot programming software (Fig. 4). The program
comprises a force-controlled search strategy for connector
mating and is pre-parameterized by the engineer. During
ramp-up of the robot cell, the robot executes this program
repeatedly. Due to the inherent robustness of force-controlled
search, the robot will successfully perform the task, albeit at
the cost of search time. Details on the robot program used
in our experiments, including the force-controlled search
strategy, are provided in Sec. III-A, along with the automated
data collection process for training.

Execution data including program parameters, robot tra-
jectories, and images, is automatically collected and used to
train two environment-conditioned MuTT models mω1 and
mω2 for the mating process (Sec. III-B). The trained models
are then used as predictors to optimize the robot program
parameters end-to-end, jointly minimizing cycle time and
failure probability (Sec. III-C). Data from the optimized
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Fig. 2. AI-based Framework for Visuotactile Connector Mating: A programmer creates a initial robot program using industry-standard tools (ARTM,
left). During the ramp-up phase, the robot executes the program repeatedly with varying search parameterizations. The resulting dataset is used to train
MuTT, a predictive visuotactile model of the robot and environment dynamics (center). MuTT serves as a sim2real predictor for the first-order optimizer
SPI, which optimizes program parameters for robust and fast connector mating given the observed process variance and current environment image (right).

execution can be used to continuously finetune the models,
realizing lifelong learning [26]. This entire process, from
data collection to model training, is fully automated and
configured via intuitive user interfaces [31].

A. Connector Mating with Tactile Probe Search

Echoing related work [19], [26], we propose a robotic
connector mating technique based on force-controlled search
and insertion, but optimize the search to fit the process noise
distribution using a model-based optimizer. We implement
the robot program using the ArtiMinds Robot Task Model
(ARTM), a commercial cross-platform robot program repre-
sentation [32]. It represents a task as a set of parameterized
skills, combined by control flow primitives (e.g. if, for,
...). Each skill accepts a set of parameters, which parameter-
ize a motion planner and a runtime controller.

The search-and-insertion program for connector mating is
shown in Fig. 4. The Probe Search skill executes three
sub-motions in a loop (cf. Fig. 2, right): A linear motion to
the next probing position; a force-controlled linear motion
along the local Z axis, which stops on contact with the
surface; and a linear depart motion along the local Z axis.
When the contact motion fails (the relative motion defined by
parameters PointFrom and PointTo is executed without
exceeding the defined contact forces), the search ends prema-
turely and returns success (valid is set to True). This and
other error handling logic are omitted in Fig. 4 for brevity.

B. Learning an Environment-Aware Forward Model

A probe search is pre-parameterized by an engineering
expert for a particular connector and searches on a grid,
which incurs considerable search overhead. We seek to
adapt the search to optimally fit the current real-world noise
distribution. Moreover, we incorporate visual information
into the optimization, so that the search pattern is optimized
online given an image of the environment. To that end, we
implement SPI [9], a first-order optimizer over a learned,
differentiable model (“shadow progam”, P̄ω) of the ARTM
robot program P . The model architecture is shown in Fig. 3.
The shadow program combines Cartesian [9] and joint-space
[33] differentiable motion planners with neural networks

and predicts the expected robot trajectory θ̄, including joint
configurations and end-effector forces and torques, given a
set of task parameters x (such as PointTo, the starting
point of a search), and an image I of the environment.
The weights ω of the neural networks in P̄ω are learned
from observation data collected by executing P in the real-
world environment, subject to small variations in the task
parameters x and simulated process variance. For details on
the model training and data collection procedure, we refer
to the literature [7], [8], [26].

Probe search can involve very (temporally) long trajecto-
ries, as many probes might be required to find the socket.
For predictive models, the difficulty of the learning problem
grows significantly with the length of the predicted trajectory.
For this reason, we propose to split the learning problem
into two separate stages, as illustrated in [7]. First, the
‘inner’ model for individual force-controlled probing (model
mω1

in Fig. 3) is trained on a dataset comprising all probe
motions across all search skill executions in the dataset.
Then, the ‘outer’ model mω2 is trained to learn the search-
level semantics, i.e. to end the trajectory once the predicted
end-effector pose drops into the hole, and to set the predicted
success flag to 1 if the hole was found.

C. Optimizing for Robust and Fast Connector Mating

Once the predictive models mω1
and mω2

have been
learned, the task parameters x, comprising the target
PointTo of the approach motion and the search pattern
Pattern of the probe search, are optimized via gradient
descent over the shadow program P̄ω . With ω frozen, a
forward pass is performed to obtain the predicted trajectory
θ̄, which is evaluated on the task-specific objective function
Φ to compute the task loss. This loss is backpropagated
through P̄ω to iteratively update x, minimizing Φ. For the
purpose of connector mating, Φ is the weighted sum between
task success Φs and cycle time Φc:

Φ(θ̄) = wsΦs + wcΦc (1)

For implementation details of the task objectives Φs and Φc,
we refer to prior work [7]. For the use case at hand, gradient-
based optimization of task parameters x yields an optimal



Fig. 3. Shadow program architecture for probe search. Differentiable
motion planners (blue) [33] and multimodal Transformers (yellow) [7] are
combined in a differentiable computation graph. Forward evaluation (top to
bottom) yields a prediction of the expected trajectory θ̄ given the program
parameters (Pattern, PointTo etc.).

Fig. 4. Extract of the ARTM robot pro-
gram for force-controlled search and inser-
tion. Probe Search internally loops over
approach, contact and depart motions for
each point in the search pattern.
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approach pose and search pattern to maximize the probability
of successful mating with minimal temporal overhead. At
runtime, the optimizer is provided with an image of the inside
of the center console, the current task parameters x and the
initial robot state. After optimization, the robot program P
is executed with the optimized parameters. Note that we do
not directly ‘play back’ the last (optimal) expected trajectory
θ̄ on the robot, but instead execute P with the optimized
parameters. This offers an additional layer of safety and
reliability: By reparameterizing an industrial robot program
rather than directly driving the robot, we can take advantage
of existing native safety functions of the robot and the
robustness of an industrial force controller.

IV. EXPERIMENTS

We evaluate our framework on a connector mating task
that reflects a robotic wire harness installation process for

TABLE I
DISTRIBUTION OF TRAINING AND TEST DATA

Metric A B C D E

# train 3,973 4,000 3,997 3,996 3,999
# test 199 200 200 200 200
Succ. (fail) 161 (38) 104 (96) 123 (77) 172 (28) 134 (66)
µL (σL) 201 (160) 224 (127) 173 (131) 137 (124) 222 (151)
µF (σF ) 0.9 (0.8) 1.3 (1.4) 1.2 (1.1) 1.0 (0.6) 1.1 (1.1)

Dataset metrics: number of training/test samples (# train/test),
successful/failed trials (Succ/Fail), and mean (µ) and std. dev. (σ) of
trajectory length (L, in points) and end-effector Z-force (F , in N).

the center console of an automobile. The experimental setup
is shown in Fig. 1. A UR5e robot arm is equipped with
a flange-mounted Sensopart VISOR V20 2D camera and
a Schunk MPG-plus 32 pneumatic gripper. Fig. 5 shows
the end-effector assembly in greater detail. We consider the
mating of five industrial connectors (cf. Table I) with five
different sockets in the center console of a current-generation
Audi automobile. The socket for connector D is oriented
with its opening to the top, the sockets for connectors A,
C, and E are rotated roughly 20 degrees, and the socket
for connector B is rotated by 90 degrees, opening to the
side. To facilitate robotic handling, the standard connector
geometry has been adapted to include gripping ribs for form-
fitting grasping with custom aluminum gripper fingers. The
robot program is shown in Fig. 4. For each plug, the robot
program is executed 4.000 times to collect training data. To
approximate real-world process noise, the center console is
mounted on a linear axis. At each execution, the position
of the center console is perturbed by a uniformly sampled
offset in the range of +/- 2 mm (+/- 1.5 mm for connector
B due to space constraints). The parameters of the robot
program for each execution are perturbed uniformly within
a predefined domain, consisting of the approach position
(+/- 2 mm), the probe pattern (each probe is uniformly
sampled within 2 mm around the approach pose), as well
as velocities, accelerations and contact force thresholds. End-
effector motions and forces are recorded and stored alongside
a 2D image of the environment, yielding a diverse dataset
for each connector type (cf. Table I). Since mω2 builds upon
the predictions of mω1 , we train mω2 on a dataset in which
the relevant parts of the ground-truth robot trajectory have
been replaced by the predictions of mω1

.

V. RESULTS

A. Prediction Accuracy

The shadow program is trained in a supervised manner
for 100 epochs using an initial learning rate of 5x10−5 with
linear decay. Table II presents the prediction performance of
MuTT across the five connectors. MuTT accurately predicts
the expected skill execution for all five connectors, achieving
an mean absolute error from the real trajectory (MAE) of the
end-effector position of less than 1 mm and within 1 N of the
end-effector force, which is on the order of FT sensor noise.
Furthermore, MuTT predicts the expected search success



TABLE II
SHADOW PROGRAM PREDICTION RESULTS

Metric A B C D E

Su
cc

es
s F1 99.4 94.2 98.4 98.6 98.5

True neg. 38/38 91/96 76/77 23/28 63/66
True pos. 159/161 97/104 120/123 172/172 133/134

Tr
aj

. MAEL 21.77 38.47 13.58 25.01 17.92
MAEP 0.76 0.71 0.43 0.71 0.75
MAEF 0.98 1.63 1.09 0.92 1.03

Evaluation of predicted task success, trajectory length (L, points),
Cartesian position (P , mm), and end-effector Z-force (F , N).

TABLE III
OPTIMIZATION RESULTS OF SPI + MUTT ON 100 UNSEEN RUNS

Metric A B C D E

CT 17 ) 11 18 ) 11 17 ) 10 13 ) 9 15 ) 10
# probes 10.2 ) 4.9 13.8 ) 5.7 11.7 ) 3.0 6.8 ) 3.2 9.7 ) 4.5
SR 75 ) 94 49 ) 88 50 ) 95 93 ) 98 72 ) 90

Cycle time (CT) in seconds and success rate (SR) in % of tasks before
and after optimization (before ) after)

with an F1 score exceeding 99 % and demonstrates robust
learning of the minority class (search failure) in the imbal-
anced datasets. The predicted trajectory length L deviates
by 20 points from the real world trajectory on average,
corresponding to a deviation by one second from ground-
truth cycle times. Overall prediction accuracies are sufficient
for use in model-based optimization (Sec. V-B).

B. Program Optimization

The trained MuTT models are employed as forward mod-
els in the model-based optimizer SPI [9] to tune the robot
program parameters for the current environment and noise
distribution. We evaluated the optimization results for all
five connectors on 100 unseen environments and program
parameterizations (cf. Table III). These 100 samples where
generated from the same distribution as the training data. The
robot programs before optimization can be considered a base-
line, as they perform purely tactile search. Our framework
was able to optimize the programs for significantly faster and
more robust insertion across all connectors. The different
unoptimized search durations and success probabilities for
the five connectors can be attributed mainly to the different
connector and socket geometries. Connector A is compar-
atively larger than the other connectors and there is more
play for the connector in its socket. This makes the search
significantly faster, since it allows for a greater tolerance
in alignment, resulting in an initial success rate of 75 %
with 10 probes fewer than the other connectors. In contrast,
connectors B and C have tighter tolerances, leading to longer
search durations. The probing motion for A was larger due
to highly uneven surfaces around the connector. The slightly
lower success rate for connector B can again be attributed to
the tighter fit compared to the other connectors. Moreover,
its socket is rotated by 90 degrees, requiring lateral insertion
in a tightly constrained environment, which might contribute
to the slightly reduced success rate of 88 % compared to the
95 % success rate of the other connectors.

Predicted drop
into socket 

Predicted drop
into socket

Fig. 6. Predicted and ground-truth position and force trajectories for probe
search (connector E). The probe-level model (green) accurately predicts the
timing and force profile of individual probes. The search-level model (blue)
accurately predicts the expected time and force when the socket is found.

TABLE IV
ABLATION STUDY: DATASET SIZE

Metric 200 1,000 2,000 4,000

Su
cc

es
s F1 98.4 97.3 96.2 98.4

True neg. 5/7 6/7 5/7 6/7
True pos. 92/93 89/93 88/93 91/93

Tr
aj

. MAEL 1158.65 48.12 52.23 38.17
MAEP 0.68 0.77 0.59 0.83
MAEF 2.48 0.96 0.95 0.96

O
pt

im
. CT 12.6 ) 13.4 12.6 ) 9.21 12.6 ) 8.6 12.6 ) 9.0

# probes 6.8 ) 7.6 6.8 ) 3.5 6.8 ) 2.8 6.8 ) 3.2
SR 93 ) 80 93 ) 95 93 ) 98 93 ) 98

See Table II and III for notation.

C. Ablation Study

Table IV shows the results of an ablation study, in which
we evaluate the performance of our framework for different
sizes of the training dataset. The framework achieves optimal
performance for a training dataset size of 2000, with strongly
diminishing returns for dataset sizes larger than 1000. The
study suggests that, while requiring sizable high-quality real-
world datasets, the data collection overhead is manageable
in the context of repetitive industrial assembly tasks, with
the collection of 1000 training samples taking roughly three
hours on our experiment setup.

VI. DISCUSSION

Our results show that the proposed visuotactile,
optimization-based search approach significantly
outperforms traditional tactile-only search by effectively
balancing robustness and cycle time. Moreover, we find
that our approach exhibits strong robustness to illumination
changes. This robustness may stem from our training data
being collected over multiple days, naturally capturing
illumination variations. Additionally, we have previously
shown that this approach integrates with lifelong learning,
enabling continuous re-optimization of robot programs [26]
and adapting to nonstationary process noise, such as gradual
drift.

In contrast to model-free self-supervised or reinforcement
learning approaches, where robots learn connector mating by
exploring a range of parameterized insertions across different
environments, our framework avoids exploration, making
training safe for industrial use. It also reduces the need



for extensive manual parameter tuning to ensure robustness
against process noise, streamlining industrial deployment.

Despite its advantages, our approach requires an initial
training phase, introducing some overhead during ramp-up.
Specifically, users must define the domain from which pro-
gram parameters are sampled, leading to temporarily reduced
efficiency in the early stages of deployment. This overhead
largely depends on the amount of training data required. It is
open to future work to explore how to further minimize the
necessary dataset size, and investigate techniques to further
improve out-of-distribution (OOD) generalization. Another
limitation is the computational overhead associated with real-
time optimization. Each execution cycle currently requires
approximately 1.5 seconds, with each iteration consisting
of 20 probe loops, 21 MuTT inferences, and 60 calls to
the motion planner. While this performance is sufficient for
many applications, further algorithmic improvements could
enhance efficiency. Given that optimization time scales with
computational resources, leveraging specialized hardware
may yield further performance improvements.

VII. CONCLUSION

We proposed a novel framework for robust connector
mating in automated wire harness assembly. By learning
an environment-conditioned forward model of the assembly
task, we demonstrated model-based program parameter op-
timization for a more robust and efficient mating process.
Our approach, validated on five different connectors, effec-
tively accounts for process noise and adapts the program to
maximize robustness while ensuring optimal search strategies
based on the current environment.

The optimization quality largely depends on the prediction
accuracy of the learned forward model. Future work should
further investigate prediction accuracy across different set-
tings, enhance OOD generalization, and improve few-shot
learning for related tasks. The inference speed of the forward
model is a key factor influencing optimization duration.
Enhancing its efficiency enables real-time program optimiza-
tion, bringing this approach closer to online deployment.
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